

2021 Physics 105 Final Exam

Done by:
Al-Zahraa Saleh

Q1:Iodine $\left(I^{131}\right)$ is widely used in the treatment and diagnosis of the thyroid gland. The radius (in fm) of this isotope is:
A) 131.0
B) 157.2
C) 5.2
D) 5.4
E) 6.1

Answer: E

Q2:a $55-\mathrm{kg}$ person has absorbed a 20-rad dose. How many joules of energy are deposited in his body?
A)1.1
B) 20
C) 11
D) 55
E) 1100

Answer: C

Q3: the activity of 1 gram of radium (${ }_{88} R A^{226}$) is exactly 1 Ci . The half-life of radium (in years) is:
A) 226
B) 1170
C) 2280
D) 1580
E)1950

Answer: D

Q4: A 70-kg researcher absorbs 4.5×10^{8} neutrons in a work day, each of energy 1.2 MeV . The relative biological effectiveness (RBE) for these neutrons is 10 . What is the equivalent dosage of the radiation exposure for this researcher, in mrem?
A) 1.2
B) 0.39
C) 0.77
D) 3.7
E) 12

Answer: A

Q5: a $2.0-\mathrm{mCi}$ source of ${ }^{32} \mathrm{P}$ is implemented in a tumor to give it a $24-\mathrm{Gy}$ dose. The half-life of ${ }^{32} \mathrm{P}$ is 14.3 days, and 1 mCi delivers $10 \mathrm{mGy} / \mathrm{min}$. How long (in min) should the source remain implanted?
A) 12
B) 1200
C) 2400
D) 300
E)800

Answer: B
Q6: lonizing radiation can be used on meat products to reduce the levels of microbial pathogens. Assume that for refrigerated meat the upper allowed limit is 3.8 kGy . If a beam of electrons each of energy 1.6 MeV , irradiates 3.0 kg of beef, how many electrons should the beef mass absorb to reach the upper allowed limit?
A) 3.8×10^{10}
B) 4.5×10^{10}
C) 3.8×10^{16}
D) 4.5×10^{16}
E) 1.6×10^{10}

Answer: D

Q7: A biological tissue of a mass m is exposed to 60 rad of alpha radiation. How many rads of slow neutrons can cause the same damage to the same tissue? (For alpha RBE=20, for slow neutrons RBE=5).
A) 240
B) 300
C) 60
D) 360
E) 1200

Answer: A

Q8: A blood vessel of radius \mathbf{r} splits into two smaller vessels, each of radius $\mathbf{r} / 3$. If the velocity in the larger vessel is \mathbf{V}, then the velocity in each of the smaller vessels is:
A) $9 \mathbf{v}$
B) $\mathbf{v} / 9$
C) $2 \mathbf{V} / 9$
D) \mathbf{v}
E) $9 \mathbf{v} / 2$

Answer: E

Q9: Water flows into the top floor of a 16-m high building through a pipe of constant 2 cm diameter. At the base of the building (ground level) the water flows into the pipe at a speed of $60 \mathrm{~cm} / \mathrm{s}$ where the gauge pressure is 3.2 atm . The gauge pressure (in atm) in the pipe in the top floor is:
A) 0
B) 1.65
C) 2.65
D) 1.54
E) 3.2

Answer: B

Q10: The surface of water in the tank supplying water ton a house is 7 m above the faucet (حنفية) in the house. If the faucet is $2.0-\mathrm{cm}$ diameter, how long (in s) does it take to fill a $0.25-\mathrm{m}^{3}$ container in the house?
A) 95
B) 57
C) 68
D) 80
E)136

Answer: C

Q11: How much force (Fm in N) must the biceps muscle exert when a $5-\mathrm{kg}$ madd is held in the hand with the forearm being in static equilibrium in horizontal position as in the figure. Assume that the elbow joint, 0 , is 5 cm far from the point of application of Fm, and that the mass of forearm and hand together is 2.0 kg :

A) 800
B) 402
C) 100
D) 200
E)50

Answer: B

Q12: The figure above shows a uniform, horizontal beam (length $=8 \mathrm{~m}$, mass $=25 \mathrm{~kg}$) that is pivoted to the wall by a hinge at point 0 , with its far end support by a cable that makes an angle of 51° with the horizontal. If a person (mass=60 kg) stands 3.0 m from the pivot, what is the horizontal component of the hinge force (in N) acting at point O ?
A) 380
B)189
C)0
D) 20
E)278

Answer: E
Q13: The kinetic energy of a car moving along a horizontal road is 130 kJ . The driver applies the breaks, and the car stops in 20 m , the force of friction (in N) (assumed constant) is:
A) 260000
B) 2600
C) 130000
D) 6500
E)1300

Answer: D

Q14: A $55-\mathrm{kg}$ athlete climbs a 9 m long rope in 10 s . His average power is (in W):
A) 231
B) 485
C) 550
D) 90
E)331

Answer: B

Q15: A 4-kg mass is placed on a rough surface that makes an angle of 20° with the horizontal. If the mass is on the verge of motion, then the coefficient of static fraction (μ_{s}) is:
A)0.36
B) 0.94
C) 0.87
D) 0.11
E)0.34

Answer: A

Q16: a student moves a 6 m along the positive x-direction, then he turns around and moves 9 m along the negative x-direction. His average velocity (in m / s) over the 7.0 total interval of motion is:
A) -3
B) 0.43
C) 0.75
D) 3
E)-0.43

Answer: E

Q17: A stone is projected vertically upward with a speed of $12 \mathrm{~m} / \mathrm{s}$ from the top of an 18 m high building. The time (in s) it takes the stone to reach the ground is:
A) 4.1
B) 0.1
C) 3.5
D) 3.0
E)0.6

Answer: C

IT DOES NOT MATTER HOW SLOWLY YOU GO AS LONG AS YOU DO NOT STOP

