Example 8.8: Biceps Torque

(d)
Axis

Exercise B - Section 8.4

If the two forces exert the same torque about the axis shown, what is the relationship between the magnitudes of the two forces?

Example

Two thin disk-shaped wheels, radii $\mathrm{r}_{\mathrm{A}}=\mathbf{3 0} \mathrm{cm} \& \mathrm{r}_{\mathrm{B}}=50 \mathrm{~cm}$, are attached to each other on an axle through the center of each. Calculate the net torque on this compound wheel due to the 2 forces shown, each of magnitude 50 N .

$$
\begin{gathered}
\tau=\tau_{\mathrm{A}+} \tau_{\mathrm{B}} \\
=-6.7 \mathrm{~m} \mathrm{~N} \mathrm{~N}
\end{gathered}
$$

$$
\tau_{\mathrm{A}}=+\mathbf{r}_{\mathbf{A}} \mathbf{F}_{\mathbf{A}}
$$

Problem 8.25

Net torque: $\sum \tau=\tau_{\mathrm{A}}+\tau_{\mathrm{B}}+\tau_{\mathrm{C}}+\tau_{\mathrm{fr}}=-1.4 \mathrm{~m} \mathrm{~N}$

Section 9-3: Application to Muscles \& Joints

FIGURE 9-14 Diagram showing the biceps (flexor) and triceps (extensor) muscles in the human arm.

Example 9-8: Elbow

Example 9-9: Forces on Your Back

$\sum \mathbf{F}_{\mathbf{x}}=\mathbf{0}, \quad \sum \mathbf{F}_{\mathbf{y}}=\mathbf{0}, \sum \boldsymbol{\tau}=\mathbf{0}$ (axis at spine base)

