Components of a vector

- The \mathbf{x} - and \mathbf{y}-components of a vector are its projections along the \mathbf{x} and \mathbf{y}-axes
- Calculation of the \mathbf{x} - and \mathbf{y}-components involves trigonometry

$$
\begin{aligned}
& \mathbf{A}_{x}=\mathbf{A} \cos \theta \\
& \mathbf{A}_{\mathbf{y}}=\mathbf{A} \sin \theta
\end{aligned}
$$

Components of a vector

- If we know the components, we can find the vector.
- Use the Pythagorean Theorem for the magnitude:

$$
A=\sqrt{A_{x}^{2}+A_{y}^{2}}
$$

- Use the $\tan ^{-1}$ function to find the direction: $\theta=\tan ^{-1} \frac{A_{y}}{A_{x}}$

Displacement \& Distance

Distance traveled by an object \neq Displacement of the object!

- Displacement $\equiv \Delta \mathrm{x} \equiv$ Change in position of an object. $\Delta \mathrm{x}$ is a vector (magnitude \& direction).
- Distance is a scalar (magnitude).

$\mathrm{x}_{1}=30 \mathrm{~m}, \mathrm{x}_{2}=10 \mathrm{~m}$
Displacement $\equiv \Delta x=x_{2}-x_{1}=-20 \mathrm{~m}$

Average Velocity \& Average Speed

Consider the displacement from slide 3 . Suppose that the person walks the whole trip in 70 s .

$$
\begin{aligned}
\text { Average Speed } & =(100 \mathrm{~m}) /(70 \mathrm{~s})
\end{aligned}=1.4 \mathrm{~m} / \mathrm{s}, ~(40 \mathrm{~m}) /(70 \mathrm{~s})=0.57 \mathrm{~m} / \mathrm{s} .
$$

Example: Average Acceleration

Example: A slowing down car

A car moves to the right on a straight highway (positive \mathbf{x}-axis). Calculate the car's average acceleration.

$$
\begin{gathered}
\mathbf{a}=\frac{\Delta v}{\Delta t}=\left(\mathbf{v}_{2}-\mathbf{v}_{1}\right) /\left(\mathbf{t}_{2}-\mathbf{t}_{1}\right)=(5 \mathrm{~m} / \mathrm{s}-15 \mathrm{~m} / \mathrm{s}) /(5 \mathrm{~s}-0 \mathrm{~s}) \\
\mathbf{a}=-2.0 \mathrm{~m} / \mathrm{s}^{2}
\end{gathered}
$$

Deceleration

The same car is moving to the left instead of to the right. We still assume positive \mathbf{x} is to the right. The car is "decelerating" \& the initial \& final velocities are same as before. Calculate the average acceleration now.

$$
\begin{aligned}
a & =\frac{v_{2}-v_{1}}{\Delta t}=\frac{-5.0 \mathrm{~m} / \mathrm{s}-(-15.0 \mathrm{~m} / \mathrm{s})}{5.0 \mathrm{~s}} \\
& =\frac{-5.0 \mathrm{~m} / \mathrm{s}+15.0 \mathrm{~m} / \mathrm{s}}{5.0 \mathrm{~s}}=+2.0 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

Deceleration is a misleading term!

