Molecular Geometry and Chemical Bonding Theory

General
Chemistry
10.1 Valence-Shell Electron-Pair Repulsion (VSEPR) Model

Number of Number of Molecular
Bonding
Pairs
Non-bonding Geometry Pairs (E)

2
0

AX_{2} Linear AX_{3}
Trigonal Planar
(e.g., BCl_{3})

All bond angles 120°

$\mathrm{AX}_{2} \mathrm{E}$ Bent
(e.g., SO_{2})

Bond $<120^{\circ}$

Number of Bonding Pairs

4

3

2

Number of
Nonbonding Pairs (E)

0

1

2

Molecular Geometry

Molecular Shape
AX_{4} Tetrahedral (e.g., CH_{4})

All bond angles 109.5°

$\mathrm{AX}_{3} \mathrm{E}$

Trigonal pyramidal (e.g., NH_{3}) Bond angle less than 109.5°
$\mathrm{AX}_{2} \mathrm{E}_{2}$ bent
(e.g., $\mathrm{H}_{2} \mathrm{O}$)

Bond angle less than109.5 ${ }^{\circ}$

Number of Number of
Bonding Pairs

Nonbonding
Pairs (E)

Molecular Geometry

Molecular Shape
AX_{5}
Trigonal bipyramid
(e.g., PF_{5})
axial-equatorial bond
angles 90°
eq-eq 120°
ax-ax 180°

$\mathrm{AX}_{4} \mathrm{E}$
Distorted Tetrahedron or Seesaw (e.g., SF_{4})
ax-eq bond angles < 90° ax-ax 180°

Number of Number of Bonding Pairs

Nonbonding
Pairs (E)

Molecular
Geometry

Molecular Shape
$\mathrm{AX}_{3} \mathrm{E}_{2} \quad$ T-shape
(e.g., ClF_{3})

Bond angles 90°

Number of Bonding Pairs

Number of Nonbonding Pairs (E)

Molecular Shape

Octahedral

(e.g., SF_{6})

Bond angles
$180^{\circ}, 90^{\circ}$

Square
Pyramidal
(e.g., BrF_{5})
Bond angles 90°

Square planar
(e.g., XeF_{4})

Bond angles $90^{\circ}, 180^{\circ}$

Summary of Molecular

 Geometries\checkmark VSEPR is based on minimizing electron repulsion in the molecule
\checkmark The direction in space of the bonding pairs gives the molecular geometry

$$
A X_{2}
$$

$$
A X_{3}
$$

$$
A X_{2} E
$$

$A X_{4}$

$A X_{5} E$
$A X_{4} E_{2}$

$>$ Bond Angles and the Effect of Lone Pairs

\checkmark A lone pair require more space than a bonding pair.

\checkmark Multiple bonds require more space than single bonds because of the greater number of electrons.

(Q) Predict the geometry of the following molecules or ions, using the VSEPR method:
a. BeCl_{2}
b. $\mathrm{NO}_{2}{ }^{-}$
c. SiCl_{4}
d. $\mathrm{ClO}_{3}{ }^{-}$
e. OF_{2}
f. TeCl_{4}
g. ICl_{3}
> Applying the VSEPR Model to Larger Molecules

10.2 Dipole Moment and Molecular Geometry

Alignment of polar molecules by an electric field

\checkmark dipole moment is a quantitative measure of the degree of charge separation in a molecule and is therefore an indicator of the polarity of the molecule
$q=$ positive charge $\quad \mu=q \times d$
$-q=$ negative charge
$d=$ distance
10.43 AsF_{3} has a dipole moment of 2.59 D . Which of the following geometries are possible: trigonal planar, trigonal pyramidal, or Tshaped?
\checkmark dipole moment of HCl is 1.08 D .
\checkmark SI units: coulomb x meter (C•m)
$\checkmark 1 \mathrm{D}=3.34 \times 10^{-30} \mathrm{C} \cdot \mathrm{m}$
$\delta^{\delta^{-}}{ }^{2 \delta^{+}}{ }^{\delta^{-}}$
$\mathrm{O}=\mathrm{C}=\mathrm{O}$
$\longleftrightarrow \longleftrightarrow$ bond dipole

\checkmark (linear, trigonal planar, and tetrahedral) give molecules of zero dipole moment; that is, the molecules are nonpolar

Table 10.1	Relationship Between Molecular Geometry and Dipole Moment	
Formula	Molecular Geometry	Dipole Moment*
AX	Linear	Can be nonzero
AX_{2}	Linear	Zero
	Bent	Can be nonzeron
AX_{3}	Trigonal planar	Zero
	Trigonal pyramidal	Can be nonzero
	T-shaped	Can be nonzero
AX_{4}	Tetrahedral	Zero
	Square planar	Zero
	Seesaw	Can be nonzero
AX_{5}	Trigonal bipyramidal	Zero
AX_{6}	Square pyramidal	Can be nonzero
	Octahedral	Zero

Exercise 10.4 Which of the following would be expected to have a dipole moment of zero? Explain
a. SOCl_{2}
b. SiF_{4}
c. OF_{2}
(Q) Explain why the dipole moment of $\mathrm{NF}_{3}=0.2 \mathrm{D}$, while that of $\mathrm{NH}_{3}=1.47 \mathrm{D}$
10.45 Which of the following molecules would be expected to have zero dipole moment on the basis of their geometry?
(CS_{2}
(b) TeF_{2}
C. SeCl_{4}
(1) XeF_{4}
10.46 Which of the following molecules would be expected to have a dipole moment of zero because of symmetry?
(a) BeBr_{2}
(b) $\mathrm{H}_{2} \mathrm{Se}$
[AsF_{3}
(d) SeF_{6}
> Effect of Polarity on Molecular Properties

Dipole moment:
B.P $\left({ }^{\circ} \mathrm{C}\right)$
cis-1,2-Dichloroethene
1.9 D
60.2

trans-1,2-Dichloroethene

0 D
48.5

10.3 Valence Bond Theory

> Basic Theory
A bond forms between two atoms when the following conditions are met:

1. The orbitals containing the electrons overlap.
2. The sum of the electrons in both orbitals is no more than two.

$$
\mathrm{H}+\mathrm{H} \rightarrow \mathrm{H}_{2}
$$

$1 \mathrm{~s}^{1} \quad 1 \mathrm{~s}^{1} \rightarrow$ Total 2 e in the newly formed H_{2} orbital

$\mathrm{He}+\mathrm{He} \rightarrow \mathrm{He}_{2}$ (does not occur)
$1 s^{2} \quad 1 s^{2} \rightarrow$ Total 4e (XXXXX)
\checkmark The strength of bonding depends on orbital overlap.
\checkmark To obtain maximum overlap, orbitals other than s bond only in given directions.
$>$ Bonding in HCl
$\mathrm{H}: 1 \mathrm{~s}^{1} \mathrm{Cl}: 1 \mathrm{~s}^{2} 2 \mathrm{~s}^{2} 2 p^{6} 3 s^{2} 3 p^{5}$

$>$ Hybrid Orbitals

\checkmark Bonding in CH_{4}
\checkmark Experiment shows that the four $\mathrm{C}-\mathrm{H}$ bonds in CH_{4} are identical. This implies that the carbon orbitals involved in bonding are also equivalent.

$\checkmark \rightarrow$ Hybrid orbitals are used

\checkmark The number of hybrid orbitals formed always equals the nymber of atomic orbitals used.

Table $\mathbf{1 0 . 2}$	Kinds of Hybrid Orbitals		
Hybrid Orbitals	Geometric Arrangement	Number of Orbitals	Example
$s p$	Linear	2	Be in BeF_{2}
$s p^{2}$	Trigonal planar	3	B in BF_{3}
$s p^{3}$	Tetrahedral	4	C in CH_{4}

How to figure out the hybridization via Lewis structures.

```
Linear arrangement: sp hybrid orbitals
```


10.4 Description of Multiple Bonding

Bonding in ethylene $\mathrm{H}_{2} \mathrm{C}=\mathrm{CH}_{2}$

The σ-bond framework in ethylene, formed by the overlap of $s p^{2}$ hybrid orbitals on C atoms and 1 s orbitals on H atoms.

The formation of the π bond in ethylene. When the $2 p$ orbitals are perpendicular to one another, there is no overlap and no bond formation. when the two $-\mathrm{CH}_{2}$ groups rotate so that the $2 p$ orbitals are parallel, a π bond forms.

Bonding in acetylene

$\mathrm{H}-\mathrm{C} \equiv \mathrm{C}-\mathrm{H}$
$\underbrace{s{ }^{1 s} \cdot}_{\sigma \text { bonds }}$

Two π bonds

Two 2p orbitals on each carbon atom begin to overlap (symbolized by lines) to form two π bonds.
(Q) Describe the bonding on a given N atom in dinitrogen difluoride, $\mathrm{N}_{2} \mathrm{~F}_{2}$, using valence bond theory.

10.53 Carbonyl fluoride, COF_{2}, is an extremely poisonous gas used in organofluorine synthesis. Give the valence bond description of the carbonyl fluoride molecule. (Both fluorine atoms are attached to the carbon atom.) (b) Nitrogen, N_{2}, makes up about 80% of the earth's atmosphere. Give the valence bond description of this molecule.

10.54 HN=NH
 10.55 HCN

\checkmark Isomers are compounds of the same molecular formula but with different arrangements of the atoms.

cis-1,2-Dichloroethene trans-1,2-Dichloroethene
\checkmark cis and trans isomers of $\mathrm{N}_{2} \mathrm{~F}_{2}$

\checkmark Lack of geometric isomers in 1,2-dichloroethane

10.5 Principles of Molecular Orbital Theory

Bonding and Antibonding Orbitals
\checkmark Molecular orbitals that are concentrated in regions between nuclei are called bonding orbitals.
\checkmark Molecular orbitals having zero values in the region between two nuclei and therefore concentrated in other regions are called antibonding orbitals
\checkmark Formation of bonding and antibonding orbitals from 1s orbitals of hydrogen atoms. When the two $1 s$ orbitals overlap, they can either add to give a bonding molecular orbital or subtract to give an antibonding molecular orbital.

```
Addition of orbitals builds
up electron density in
overlap region.
```


Subtraction of orbitals results in low electron density in the overlap region

Relative energies of the 1 s orbital of the H atom and the $\boldsymbol{\sigma}_{1 \mathrm{~s}}$ and $\boldsymbol{\sigma}^{*}{ }_{1 \mathrm{~s}}$ molecular orbitals of H_{2}. Arrows denote occupation of the s1s orbital by electrons in the ground state of H_{2}.

The corresponding electron configuration is: $\left(\sigma_{1 s}\right)^{2}$

Excited state of H_{2} :

The corresponding electron configuration is: $\left(\sigma_{1 s}\right)^{1}\left(\sigma^{*}{ }_{1 s}\right)^{1}$
$\checkmark \mathrm{Why} \mathrm{He}_{2}$ is not a stable molecule?
The corresponding electron configuration is: $\left(\sigma_{1 s}\right)^{2}\left(\sigma^{*}{ }_{1 s}\right)^{2}$

$>$ Bond Order

Bond order $=\frac{1}{2}\left(n_{\mathrm{b}}-n_{\mathrm{a}}\right)$
\checkmark For H_{2}, which has two bonding electrons,
Bond order $=\frac{1}{2}(2-0)=1$
\checkmark For $\mathrm{H}_{2}{ }^{+}=1 / 2(1-0)=1 / 2$
\checkmark For $\mathrm{H}_{2}^{-}=1 / 2(2-1)=1 / 2$

\checkmark For He_{2}, which has two bonding and two antibonding electrons Bond order $=\frac{1}{2}(2-2)=0$
\checkmark For $\mathrm{He}_{2}{ }^{+}=1 / 2(2-1)=1 / 2$
\checkmark For $\mathrm{He}_{2}{ }^{2+}=1 / 2(2-0)=1$

He
He_{2}
He
24
\checkmark The ground state electron configuration of Li_{2} :

$$
\operatorname{Li}_{2} \quad\left(\sigma_{1 s}\right)^{2}\left(\sigma_{1 s}^{*}\right)^{2}\left(\sigma_{2 s}\right)^{2}
$$

Li atom $\quad \mathrm{Li}_{\mathbf{2}}$ molecule Li atom

\checkmark The $\left(\sigma_{1 s}\right)^{2}\left(\sigma_{1 s}^{*}\right)^{2}$ part of the configuration is often abbreviated KK (which denotes the K shells, or inner shells, of the two atoms). $\rightarrow \mathrm{Li}_{2} \mathrm{KK}\left(\sigma_{2 s}\right)^{2}$
\checkmark In calculating bond order, we can ignore KK (it includes two bonding
 and two antibonding electrons).
\checkmark We can write: B.O of $\mathrm{Li}_{2}=1 / 2(2-0)=1$
\checkmark Or B.O of $\mathrm{Li}_{2}=1 / 2(4-2)=1$

\checkmark The ground state electron configuration of Be_{2} :
$\mathrm{Be}_{2} \quad \mathrm{KK}\left(\sigma_{2 s}\right)^{2}\left(\sigma_{2 s}^{*}\right)^{2} \quad \checkmark$ We can write: B.O of $\mathrm{Be}_{2}=1 / 2(2-2)=0$
\checkmark Or B.O of $\mathrm{Li}_{2}=1 / 2(4-4)=0$
\checkmark For $\mathrm{Be}_{2}{ }^{+}=1 / 2(2-1)=1 / 2$
\checkmark For $\mathrm{Be}_{2}^{2+}=1 / 2(2-0)=1$

$>$ Factors That Determine Orbital Interaction

\checkmark The strength of the interaction between two atomic orbitals to form molecular orbitals is determined by two factors:
(1) the energy difference between the interacting orbitals and (2) the magnitude of their overlap.
\checkmark For the interaction to be strong, the energies of the two orbitals must be approximately equal and the overlap must be large.

