EBBING•GAMMON

Thermochemistry

General
Chemistry

$>$ Understanding Heats of Reaction

\checkmark Thermodynamics is the science of the relationships between heat and other forms of energy.
\checkmark Thermochemistry is one area of thermodynamics. It concerns the study of the quantity of heat absorbed or evolved (given off) by chemical reactions.
> 6.1 Energy and Its Units
\checkmark Energy is the potential or capacity to move matter.
\checkmark Energy can exist in different forms, including heat, light, and electrical energy, and these different forms can be interconverted.
> Kinetic Energy
is the energy associated with an object by virtue of its motion.
$E_{k}=\frac{1}{2} m v^{2}$

$$
\mathrm{kg} \cdot \mathrm{~m}^{2} / \mathrm{s}^{2}=\text { joule }
$$

Watt = joule/s
A 100-watt bulb uses 100 joules of energy every second
\checkmark calorie (cal) (non-Sl unit) the amount of energy required to raise the temperature of one gram of water by one degree Celsius

$$
1 \mathrm{cal}=4.184 \mathrm{~J}
$$

Exercise 6.1
An electron (mass $=9.11 \times 10^{-31} \mathrm{~kg}$) is accelerated by a positive charge to a speed of $5.0 \times 10^{6} \mathrm{~m} / \mathrm{s}$.
What is the kinetic energy of the electron in joules? in calories?
$E_{k}=1 / 2 m v^{2}$
$E_{k}=1 / 2 \times 9.11 \times 10^{-31} \mathrm{~kg} \times\left(5.0 \times 10^{6} \mathrm{~m} / \mathrm{s}\right)^{2}=1.13 \times 10^{-17} \mathrm{~kg} \cdot \mathrm{~m}^{2} / \mathrm{s}^{2}$ or J
$1.13 \times 10^{-17} \mathrm{~J} \times \frac{1 \mathrm{cal}}{4.184 \mathrm{~J}}=2.7 \times 10^{-18} \mathrm{cal}$
$>$ Potential Energy $\quad E_{p}=m g h$
the energy an object has by virtue of its position in a field of force. $m=$ mass (gram), $g=$ constant acceleration of gravity $=9.807 \mathrm{~m} / \mathrm{s}^{2}$ $h=$ height

$$
E_{\text {tot }}=E_{k}+E_{p}+U \quad U=\text { internal energy }
$$

> Internal Energy

Is the sum of the kinetic and potential energies of the particles making up a substance.
> Law of Conservation of Energy (first law of thermodynamics)
\checkmark Energy may be converted from one form to another, but the total quantity of energy remains constant.

6.2 First Law of Thermodynamics; Work and Heat

\checkmark Definition of Work (w):
Work is an energy transfer (or energy flow) into or out of a thermodynamic system whose effect on the surroundings is equivalent to moving an object through a field of force.
\checkmark Definition of Heat (q):
Heat is an energy transfer (energy flow) into or out of a thermodynamic system that results from a temperature difference between the system and its surroundings.

Work done by the system on the surroundings
Work done on the system by the surroundings
Heat absorbed by the system from the surroundings (endothermic process)
Heat absorbed by the surroundings from the system (exothermic process)
> Change of Internal Energy $\quad \Delta U=U_{f}-U_{i}$
\checkmark Internal energy is an extensive property, that is, it depends on the amount of substances in the system.
\checkmark Other examples of extensive properties are mass and volume.
\checkmark Intensive property does not depend on the amount of substance (color, density)
\checkmark Internal energy is also a state function.
\checkmark A state function is a property of a system that depends only on initial and final states.
\checkmark Such as temperature and pressure.

$$
\begin{aligned}
& \Delta U=U_{\text {final }}-U_{\text {initial }} \\
& \Delta P=P_{\text {final }}-P_{\text {initial }} \\
& \Delta V=V_{\text {final }}-V_{\text {initial }} \\
& \Delta T=T_{\text {final }}-T_{\text {initial }}
\end{aligned}
$$

Potential energy of hiker 1 and hiker 2 is the same even though they took different paths.
> First Law of Thermodynamics

$$
\Delta U=q+w
$$

(Q) The work done when a gas is compressed in a cylinder is 462 J . During this process, there is a heat transfer of 128 J from the gas to the surroundings. Calculate the energy change for this process.

$$
\begin{aligned}
\Delta U & =q+w \\
& =-128 \mathrm{~J}+462 \mathrm{~J}=334 \mathrm{~J}
\end{aligned}
$$

6.49 A gas is cooled and loses 82 J of heat. The gas contracts as it cools, and work done on the system equal to 29 J is exchanged with the surroundings. Calculate ΔU ?
system loses heat so $q=-82 \mathrm{~J}$ system contracts so $w=+29 \mathrm{~J}$.

$$
\Delta U=q+w=-82 \mathrm{~J}+29 \mathrm{~J}=-53 \mathrm{~J}
$$

6.3 Heat of Reaction; Enthalpy of Reaction

$>$ Heat of Reaction
\checkmark exothermic process (q is negative)
is a chemical reaction or a physical change in which heat is evolved or is released from the system.
\checkmark endothermic process (q is positive)
is a chemical reaction or a physical change in which heat is absorbed by the system.

Type of Reaction	Experimental Effect Noted	Result on System	Sign of \boldsymbol{q}
Endothermic	Reaction vessel cools (heat is absorbed)	Energy added	+
Exothermic	Reaction vessel warms (heat is evolved)	Energy subtracted	-
	(heal		

Exercise 6.3 Ammonia burns in the presence of a platinum catalyst to give nitric oxide, NO . In an experiment, $4 \mathrm{~mol} \mathrm{NH}_{3}$ is burned and evolves +170 kJ of heat. Is the reaction endothermic or exothermic? What is the value of q ?

$$
4 \mathrm{NH}_{3}(g)+5 \mathrm{O}_{2}(\mathrm{~g}) \xrightarrow{\mathrm{Pt}} 4 \mathrm{NO}(\mathrm{~g})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

Heat is evolved \rightarrow reaction is exothermic.
The value of q is -170 kJ .

> Pressure-Volume Work
 $w=-P \Delta V$

Exercise 6.4 Consider the combustion of CH_{4}.

$$
\mathrm{CH}_{4}(g)+2 \mathrm{O}_{2}(g) \longrightarrow \mathrm{CO}_{2}(g)+2 \mathrm{H}_{2} \mathrm{O}(l)
$$

The heat of reaction at $77^{\circ} \mathrm{C}$ and 1.00 atm is -885.5 kJ .
What is the change in volume when $1.00 \mathrm{~mol} \mathrm{CH}_{4}$ reacts with $2.00 \mathrm{~mol} \mathrm{O}_{2}$? (You can ignore the volume of liquid water). What is w for this change?
Calculate ΔU for the change indicated by the chemical equation.

$$
\begin{aligned}
& \Delta V=V_{\text {final }}-V_{\text {initial }}=\frac{n_{\text {final }} R T}{P}-\frac{n_{\text {initial }} R T}{P}=\frac{\left(n_{\text {final }}-n_{\text {initial }}\right) R T}{P} \\
& \Delta V=\frac{(1 \mathrm{~mol}-3 \mathrm{~mol})\left(0.08206 \frac{\mathrm{~L} \cdot \mathrm{~atm}}{\mathrm{~mol} \bullet \mathrm{~K}}\right)(35 \underline{0} \mathrm{~K})}{1.0 \underline{\mathrm{~atm}}}=-57 . \underline{4} \mathrm{~L}
\end{aligned}
$$

Because the change is from 3 moles of gas to 1 mole of gas, this represents a compression being performed on the system \rightarrow work is done on the system (+ve)
$w=-P \times \Delta V$
$=-(1.0 \mathrm{~atm}) \times(-57.44 \mathrm{~L})=57.44 \mathrm{~atm} . \mathrm{L}$
$57.44 \mathrm{~atm} . \mathrm{L} \times 101.3=+5818 \mathrm{~J}=+5.8 \mathrm{~kJ}$

1 atm.L = 101.3 J

$\Delta U=q+w \quad \rightarrow \Delta U=-885.5 \mathrm{~kJ}+5.8 \mathrm{~kJ}=-879.7 \mathrm{~kJ}$

$>$ Enthalpy (H) and Enthalpy of Reaction $H=U+P V$

\checkmark Because U, P, and V are state functions, H is also a state function. $\quad \Delta H=H_{f}-H_{i}$
$\Delta U=q+w$

$$
\Delta U=q+w=q-P \Delta V=q-R T \Delta n \quad w=-P \Delta V
$$

$\Delta n=$ number of moles of product gas - number of moles of reactant gases

$$
\begin{aligned}
q & =\Delta U+P \Delta V=\left(U_{f}-U_{i}\right)+P\left(V_{f}-V_{i}\right)=U_{f}-U_{i}+P V f-P V_{i} \\
q & =\left(U_{f}+P V_{f}\right)-\left(U_{i}+P V_{i}\right)=H_{f}-H_{i}
\end{aligned}
$$

$$
q=\Delta H(\text { At fixed pressure and a given temperature })
$$

> Enthalpy of reaction
The change in enthalpy, $\Delta \mathrm{H}$, for a reaction at a given temperature and fixed pressure

$$
\Delta H=H \text { (products) }-H \text { (reactants) }
$$

(Q) Calculate the change in internal energy when 2 moles of CO are converted to 2 moles of CO_{2} at 1 atm . and $25^{\circ} \mathrm{C}$.

$$
2 \mathrm{CO}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \longrightarrow 2 \mathrm{CO}_{2}(\mathrm{~g}) \quad \Delta H=-566.0 \mathrm{~kJ} / \mathrm{mol}
$$

$\Delta U=q-R T \Delta n \quad q=\Delta H$ (At fixed pressure and a given temperature)
$\Delta n=$ number of moles of product gas - number of moles of reactant gases
$=2-3$
$=-1$
$\mathrm{R}=8.314 \mathrm{~J} / \mathrm{K} \cdot \mathrm{mol}$ and $T=298 \mathrm{~K}$
$\Delta U=\Delta H-R T \Delta n$
$=-566.0 \mathrm{~kJ} / \mathrm{mol}-(8.314 \mathrm{~J} / \mathrm{K} \cdot \mathrm{mol})\left(\frac{1 \mathrm{~kJ}}{1000 \mathrm{~J}}\right)(298 \mathrm{~K})(-1)$
$=-563.5 \mathrm{~kJ} / \mathrm{mol}$

6.4 Thermochemical Equations

Thermochemical Equations

Is ΔH negative or positive?
System absorbs heat
Endothermic
$\Delta H>0$
6.01 kJ are absorbed for every 1 mole of ice that melts at $0^{\circ} \mathrm{C}$ and 1 atm .

$$
\mathrm{H}_{2} \mathrm{O}(\mathrm{~s}) \longrightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \quad \Delta H=6.01 \mathrm{~kJ} / \mathrm{mol}
$$

Thermochemical Equations

Is ΔH negative or positive?
System gives off heat
Exothermic
$\Delta H<0$
890.4 kJ are released for every 1 mole of methane that is combusted at $25^{\circ} \mathrm{C}$ and 1 atm .
$\mathrm{CH}_{4}(g)+2 \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{n}) \Delta H=-890.4 \mathrm{~kJ} / \mathrm{mol}$

- The stoichiometric coefficients always refer to the number of moles of a substance

$$
\mathrm{H}_{2} \mathrm{O}(\mathrm{~s}) \longrightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{n} \quad \Delta H=6.01 \mathrm{~kJ} / \mathrm{mol}
$$

- If you reverse a reaction, the sign of ΔH changes

$$
\mathrm{H}_{2} \mathrm{O}(I \mathrm{I}) \longrightarrow \mathrm{H}_{2} \mathrm{O}(\mathbb{S}) \quad \Delta H=-6.01 \mathrm{~kJ} / \mathrm{mol}
$$

- If you multiply both sides of the equation by a factor n, then ΔH must change by the same factor n.

$$
2 \mathrm{H}_{2} \mathrm{O}(s) \longrightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \quad \Delta \mathrm{H}=2 \times 6.01=12.0 \mathrm{~kJ}
$$

- The physical states of all reactants and products must be specified in thermochemical equations.

$$
\begin{array}{ll}
\mathrm{H}_{2} \mathrm{O}(\text { (I) }) \longrightarrow \mathrm{H}_{2} \mathrm{O}(I!) & \Delta H=6.01 \mathrm{~kJ} / \mathrm{mol} \\
\mathrm{H}_{2} \mathrm{O}(1) \longrightarrow \mathrm{H}_{2} \mathrm{O} \text { (gI) } & \Delta H=44.0 \mathrm{~kJ} / \mathrm{mol}
\end{array}
$$

6.5 Applying Stoichiometry to Heats of Reaction

(Q) How much heat is evolved when $9.07 \times 10^{5} \mathrm{~g}$ of ammonia is produced according to the following equation?

$$
\begin{gathered}
\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \longrightarrow 2 \mathrm{NH}_{3}(\mathrm{~g}) ; \Delta H=-91.8 \mathrm{~kJ} \\
9.07 \times 10^{5} \mathrm{~g} \mathrm{HH}_{3} \times \frac{1 \mathrm{~mol} \mathrm{NH}_{3}}{17.0 \mathrm{gAH}_{3}} \times \frac{-91.8 \mathrm{~kJ}}{2 \mathrm{~mol} \mathrm{NH}_{3}}=-2.45 \times 10^{6} \mathrm{~kJ}
\end{gathered}
$$

(Q) Given the thermochemical equation

$$
2 \mathrm{SO}_{2}(g)+\mathrm{O}_{2}(g) \rightarrow 2 \mathrm{SO}_{3}(\mathrm{~g}) \quad \Delta H=-198.2 \mathrm{~kJ} / \mathrm{mol}
$$ calculate the heat evolved when 87.9 g of SO_{2} (molar mass $=$ $64.07 \mathrm{~g} / \mathrm{mol}$) is converted to SO_{3}.

grams of $\mathrm{SO}_{2} \longrightarrow$ moles of $\mathrm{SO}_{2} \longrightarrow$ kilojoules of heat generated

$$
\begin{aligned}
\Delta H & =87.9 \mathrm{~g} \mathrm{~S} \mathrm{\theta}_{2} \times \frac{1{\mathrm{~mol} \mathrm{SO}_{2}}_{64.07 \mathrm{~g} \mathrm{SO}_{2}} \times \frac{-198.2 \mathrm{~kJ}}{2 \mathrm{mols} \mathrm{\sigma}_{2}}}{}=-136 \mathrm{~kJ}
\end{aligned}
$$

6.6 Measuring Heats of Reaction

$>$ Heat Capacity and Specific Heat
\checkmark The heat capacity (C) of a sample of substance is the quantity of heat needed to raise the temperature of the sample of substance one degree Celsius (or one kelvin).

$$
q=C \Delta t
$$

\checkmark The specific heat capacity (S) (or simply specific heat) is the quantity of heat required to raise the temperature of one gram of a substance by one degree Celsius (or one kelvin) at constant pressure.

$$
q=s \times m \times \Delta t
$$

$C=m x s$
(Q) Calculate the heat absorbed by 15.0 g of water to raise its temperature from $20.0^{\circ} \mathrm{C}$ to $50.0^{\circ} \mathrm{C}$ (at constant pressure). The specific heat of water is $4.18 \mathrm{~J} /\left(\mathrm{g} \cdot{ }^{\circ} \mathrm{C}\right)$.

$$
\begin{aligned}
& q=s \times m \times \Delta t \quad \Delta t=t_{f}-t_{i}=50.0^{\circ} \mathrm{C}-20.0^{\circ} \mathrm{C}=+30.0^{\circ} \mathrm{C} \\
& q=4.18 \mathrm{~J} \cdot\left(\mathrm{~g} \cdot{ }^{\circ} \mathrm{C}\right) \times 15.0 \mathrm{~g} \times\left(+30.0^{\circ} \mathrm{C}\right)=1.88 \times 10^{\mathbf{3}} \mathrm{J}
\end{aligned}
$$

$>$ Measurement of Heat of Reaction

\checkmark Heat of a reaction is measured in a calorimeter, a device used to measure the heat absorbed or evolved during a physical or chemical change.
\checkmark Calorimeters are considered isolated systems $\rightarrow q_{\text {system }}=0$

$$
\begin{aligned}
& q_{\mathrm{sys}}=q_{\text {water }}+q_{\mathrm{cal}}+q_{\mathrm{rxn}} \\
& q_{\mathrm{sys}}=0 \\
& q_{\mathrm{rxn}}=-\left(q_{\text {water }}+q_{\mathrm{cal}}\right) \\
& q_{\text {water }}=m \times \mathrm{s} \times \Delta t \\
& q_{\mathrm{cal}}=C_{c a l} \times \Delta t
\end{aligned}
$$

> Constant-pressure calorimeter

$$
\Delta H=q_{\mathrm{rxn}}
$$

Exercise 6.9 Suppose 33 mL of 1.20 M HCl is added to 42 mL of a solution containing excess sodium hydroxide, NaOH , in a coffee-cup calorimeter. The solution temperature, originally $25.0^{\circ} \mathrm{C}$, rises to $31.8^{\circ} \mathrm{C}$. Give the enthalpy change, ΔH, for the reaction: assume that the specific heat and the density of the final solution in the cup are those of water

$$
\begin{gathered}
\mathrm{HCl}(a q)+\mathrm{NaOH}(a q) \longrightarrow \mathrm{NaCl}(a q)+\mathrm{H}_{2} \mathrm{O}(l) \\
q_{\text {solution }}=s \times m \times \Delta t=4.184 \mathrm{~J} /\left(\mathrm{g} \cdot{ }^{\circ} \mathrm{C}\right) \times 75 \mathrm{~g} \times\left(31.8^{\circ} \mathrm{C}-25.0^{\circ} \mathrm{C}\right) \\
=2133.8 \mathrm{~J} \\
q_{\text {sys }}=q_{\text {soln }}+q_{\mathrm{rxn}}=0 \rightarrow q_{\mathrm{rxn}}=-q_{\text {soln }} \rightarrow q_{\mathrm{rxn}}=-2133.8 \mathrm{~J} \\
\mathrm{~mol} \mathrm{HCl}=1.20 \mathrm{~mol} / \mathrm{L} \times 0.033 \mathrm{~L}=0.0396 \mathrm{~mol} \\
\Delta H=\frac{-2 \underline{133.8 ~ \mathrm{~J}}}{0.0396 \mathrm{~mol}}=-53884 \mathrm{~J} / \mathrm{mol}=-54 \mathrm{~kJ} / \mathrm{mol}
\end{gathered}
$$

$>$ Constant-volume calorimeter (Bomb calorimeter) $\Delta H \sim q_{\mathrm{rxn}}$ Suppose 0.562 g of graphite is placed in a bomb calorimeter with an excess of oxygen at $25.0^{\circ} \mathrm{C}$ and 1 atm . pressure. The graphite is ignited, and it burns according to the equation:

$$
\mathrm{C} \text { (graphite) }+\mathrm{O}_{2}(g) \longrightarrow \mathrm{CO}_{2}(g)
$$

On reaction, the calorimeter temperature rises from $25.0^{\circ} \mathrm{C}$ to $25.89^{\circ} \mathrm{C}$. The heat capacity of the calorimeter and its contents was determined in a separate experiment to be $20.7 \mathrm{~kJ} /{ }^{\circ} \mathrm{C}$. What is the heat of reaction? Express the answer as a thermochemical equation.

$$
\begin{aligned}
q_{r x n} & =-C_{c a l} \Delta t=-20.7 \mathrm{~kJ} /{ }^{\circ} \mathrm{C} \times\left(25.89^{\circ} \mathrm{C}-5.00^{\circ} \mathrm{C}\right) \\
& =-20.7 \mathrm{~kJ} /{ }^{\circ} \mathrm{C} \times 0.89^{\circ} \mathrm{C}=-18.4 \mathrm{~kJ}
\end{aligned}
$$

$0.562 \mathrm{~g} \rightarrow$? Mole C

$$
\mathrm{C}(\text { graphite })+\mathrm{O}_{2}(\mathrm{~g}) \longrightarrow \mathrm{CO}_{2}(\mathrm{~g}) ; \Delta H=-3.9 \times 10^{2} \mathrm{~kJ}
$$

6.73 When 15.3 g of NaNO_{3} was dissolved in water in a constantpressure calorimeter, the temperature fell from $25.00^{\circ} \mathrm{C}$ to $21.56^{\circ} \mathrm{C}$. If the heat capacity of the solution and the calorimeter is $1071 \mathrm{~J} /{ }^{\circ} \mathrm{C}$, what is the enthalpy change when 1 mol . of NaNO_{3} dissolves in water? The solution process is

$$
\mathrm{NaNO}_{3}(s) \longrightarrow \mathrm{Na}^{+}(a q)+\mathrm{NO}_{3}^{-}(a q) ; \Delta H=?
$$

$q_{\text {calorimeter }}=\mathrm{C}_{\text {cal }} \times \Delta \mathrm{T}=\left(1071 \mathrm{~J} /{ }^{\circ} \mathrm{C}\right)\left(21.56^{\circ} \mathrm{C}-25.00^{\circ} \mathrm{C}\right)=-3684.2 \mathrm{~J}$
$q_{\text {calorimeter }}=-q_{\text {rxn }} \rightarrow q_{\text {rxn }}=3684.2 \mathrm{~J}$
The amount of heat absorbed by 15.3 g of $\mathrm{NaNO}_{3}=3684.2 \mathrm{~J}$ The amount of heat absorbed by 1 mol of NaNO_{3} is ?
(Q) A bomb calorimeter has a heat capacity of $2.47 \mathrm{~kJ} /{ }^{\circ} \mathrm{C}$. When a $3.74 \times 10^{-3} \mathrm{~mol}$ sample of ethylene was burned in this calorimeter, the temperature increased by $2.14^{\circ} \mathrm{C}$. Calculate the energy of combustion for one mole of ethylene.
A. $-5.29 \mathrm{~kJ} / \mathrm{mol}$
B. $5.29 \mathrm{~kJ} / \mathrm{mol}$

$$
\begin{aligned}
& q_{\mathrm{cal}}=C \Delta t \\
& =2.47 \mathrm{~kJ} /{ }^{\circ} \mathrm{C} \times 2.14 \circ \mathscr{C}=5.286 \mathrm{~kJ} \\
& q_{\mathrm{rxn}}=-q_{\mathrm{cal}}=-5.286 \mathrm{~kJ} \\
& \begin{array}{c}
\Delta \mathrm{H}_{\mathrm{rxn}}= \\
=-5.286 \mathrm{~kJ} / 3.74 \times 10^{-3} \mathrm{~mol} \\
=
\end{array} \\
& =-1410 \mathrm{~kJ} / \mathrm{mol}
\end{aligned}
$$

(Q) A lead (Pb) pellet having a mass of 26.47 g at $89.98^{\circ} \mathrm{C}$ was placed in a constant-pressure calorimeter of negligible heat capacity containing 100.0 mL of water.
The water temperature rose from $22.50^{\circ} \mathrm{C}$ to $23.17^{\circ} \mathrm{C}$.
What is the specific heat of the lead pellet?

$$
\begin{aligned}
& q_{\mathrm{Pb}}+q_{\mathrm{H}_{2} \mathrm{O}}=0 \quad q_{\mathrm{H}_{2} \mathrm{O}}=m s \Delta t \\
& q_{\mathrm{Pb}}=-q_{\mathrm{H}_{2} \mathrm{O}} \quad \\
& q_{\mathrm{H}_{2} \mathrm{O}}=(100.0 \mathrm{~g})\left(4.184 \mathrm{~J} / \mathrm{g} \cdot{ }^{\circ} \mathrm{C}\right)\left(23.17^{\circ} \mathrm{C}-22.50^{\circ} \mathrm{C}\right) \\
& =280.3 \mathrm{~J} \quad \rightarrow q_{\mathrm{Pb}}=-280.3 \mathrm{~J} \\
& q_{\mathrm{Pb}}=m s \Delta t \\
& -280.3 \mathrm{~J}=(26.47 \mathrm{~g})(\mathrm{s})\left(23.17^{\circ} \mathrm{C}-89.98^{\circ} \mathrm{C}\right) \\
& \mathrm{s}=0.158 \mathrm{~J} / \mathrm{g} \cdot{ }^{\circ} \mathrm{C}
\end{aligned}
$$

6.7 Hess's Law

"for a chemical equation that can be written as the sum of two or more steps, the enthalpy change for the overall equation equals the sum of the enthalpy changes for the individual steps"

$$
\begin{aligned}
& \mathrm{C} \text { (graphite) }+1 / 2 \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow \mathrm{CO}(g) \\
& \mathrm{CO}(g)+1 / 2 \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow \mathrm{CO}_{2}(\mathrm{~g}) \\
& \mathrm{C} \text { (graphite) }+\mathrm{O}_{2}(\mathrm{~g}) \longrightarrow \mathrm{CO}_{2}(\mathrm{~g})
\end{aligned}
$$

(Q) What is the enthalpy of reaction, ΔH, for the formation of tungsten carbide, WC, from the elements?

$$
\begin{gather*}
\mathrm{W}(s)+\mathrm{C}(\text { graphite }) \longrightarrow \mathrm{WC}(s) \\
2 \mathrm{~W}(s)+3 \mathrm{O}_{2}(g) \longrightarrow 2 \mathrm{WO}_{3}(s) ; \Delta H=-1685.8 \mathrm{~kJ} \tag{1}\\
\mathrm{C}(\text { graphite })+\mathrm{O}_{2}(g) \longrightarrow \mathrm{CO}_{2}(g) ; \Delta H=-393.5 \mathrm{~kJ} \tag{2}\\
2 \mathrm{WC}(s)+5 \mathrm{O}_{2}(g) \longrightarrow 2 \mathrm{WO}_{3}(s)+2 \mathrm{CO}_{2}(g) ; \Delta H=-2391.8 \mathrm{~kJ} \tag{3}
\end{gather*}
$$

Exercise 6.10 Manganese metal can be obtained by reaction of manganese dioxide with aluminum.

$$
4 \mathrm{Al}(s)+3 \mathrm{MnO}_{2}(s) \longrightarrow 2 \mathrm{Al}_{2} \mathrm{O}_{3}(s)+3 \mathrm{Mn}(s)
$$

What is ΔH for this reaction? Use the following data:

$$
\begin{aligned}
2 \mathrm{Al}(s)+\frac{3}{2} \mathrm{O}_{2}(g) \longrightarrow \mathrm{Al}_{2} \mathrm{O}_{3}(s) ; \Delta H & =-1676 \mathrm{~kJ} \\
\mathrm{Mn}(s)+\mathrm{O}_{2}(g) \longrightarrow \mathrm{MnO}_{2}(s) ; \Delta H & =-520 \mathrm{~kJ}
\end{aligned}
$$

6.8 Standard Enthalpies of Formation

\checkmark The term standard state refers to the standard thermodynamic conditions chosen for substances when listing or comparing thermodynamic data: 1 atm pressure and the specified temperature (usually $25^{\circ} \mathrm{C}$).
ΔH° is called the standard enthalpy of reaction
\checkmark An allotrope is one of two or more distinct forms of an element in the same physical state. $\left(\mathrm{O}_{2}\right.$ and $\left.\mathrm{O}_{3}\right)$, (C: graphite and diamond)
\checkmark The reference form of an element for the purpose of specifying the formation reaction is usually the most stable form of the element under standard thermodynamic conditions.
\checkmark The reference form of oxygen at $25^{\circ} \mathrm{C}$ is $\mathrm{O}_{2}(\mathrm{~g})$; the reference form of carbon at $25^{\circ} \mathrm{C}$ is graphite ($\mathrm{C}_{\text {graphite }}$)

The standard enthalpy of formation (also called the standard heat of formation) of a substance, denoted ΔH_{f}°,
is the enthalpy change for the formation of one mole of the substance in its standard state from its elements in their reference form and in their standard states.

Table 6.4	Standard Enthalpies Substances at $25^{\circ} \mathrm{C}$	ion of Som	
Substance	$\Delta H_{\mathrm{f}}^{\mathrm{o}}$ (kJ/mol)	Substance	$\Delta H_{\text {f }}^{\mathbf{o}}(\mathbf{k J} / \mathrm{mol})$
$\mathrm{Ag}(\mathrm{s})$	0	$\mathrm{H}_{2} \mathrm{O}_{2}(l)$	-187.6
$\mathrm{AgCl}(\mathrm{s})$	-127.04	$\mathrm{Hg}(l)$	0
$\mathrm{Al}(\mathrm{s})$	0	$\mathrm{I}_{2}(s)$	0
$\mathrm{Al}_{2} \mathrm{O}_{3}(s)$	-1669.8	$\mathrm{HI}(\mathrm{g})$	25.94
$\mathrm{Br}_{2}(l)$	0	$\mathrm{Mg}(\mathrm{s})$	0
$\mathrm{HBr}(\mathrm{g})$	-36.2	$\mathrm{MgO}(s)$	-601.8
C(graphite)	0	$\mathrm{MgCO}_{3}(s)$	-1112.9
C(diamond)	1.90	$\mathrm{N}_{2}(\mathrm{~g})$	0
$\mathrm{CO}(\mathrm{g})$	-110.5	$\mathrm{NH}_{3}(\mathrm{~g})$	-46.3
$\mathrm{CO}_{2}(\mathrm{~g})$	-393.5	$\mathrm{NO}(\mathrm{g})$	90.4
$\mathrm{Ca}(\mathrm{s})$	0	$\mathrm{NO}_{2}(\mathrm{~g})$	33.85
$\mathrm{CaO}(s)$	-635.6	$\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g})$	9.66
$\mathrm{CaCO}_{3}(s)$	-1206.9	$\mathrm{N}_{2} \mathrm{O}(\mathrm{g})$	81.56
$\mathrm{Cl}_{2}(\mathrm{~g})$	0	$\mathrm{O}(\mathrm{g})$	249.4
$\mathrm{HCl}(\mathrm{g})$	-92.3	$\mathrm{O}_{2}(\mathrm{~g})$	0
$\mathrm{Cu}(\mathrm{s})$	0	$\mathrm{O}_{3}(\mathrm{~g})$	142.2
$\mathrm{CuO}(s)$	-155.2	S(rhombic)	0
$\mathrm{F}_{2}(\mathrm{~g})$	0	S (monoclinic)	0.30
HF(g)	-268.61	$\mathrm{SO}_{2}(\mathrm{~g})$	-296.1
H(g)	218.2	$\mathrm{SO}_{3}(\mathrm{~g})$	-395.2
$\mathrm{H}_{2}(\mathrm{~g})$	0	$\mathrm{H}_{2} \mathrm{~S}(\mathrm{~g})$	-20.15
$\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$	-241.8	$\mathrm{ZnO}(s)$	-347.98
$\mathrm{H}_{2} \mathrm{O}(l)$	-285.8	$\mathrm{ZnS}(s)$	-202.9

(Q) Which reaction corresponds to the standard enthalpy of formation of $\mathrm{NaHCO}_{3}(\mathrm{~s}), \Delta H_{f}{ }^{\circ}=-947.7 \mathrm{~kJ} / \mathrm{mol}$?
A. $\mathrm{Na}(s)+1 / 2 \mathrm{H}_{2}(g)+{ }^{3} / 2 \mathrm{O}_{2}(g)+\mathrm{C}(s, g r) \rightarrow \mathrm{NaHCO}_{3}(s)$
B. $\mathrm{Na}^{+}(g)+\mathrm{H}^{+}(g)+3 \mathrm{O}^{2-}(g)+\mathrm{C}^{4+}(g) \rightarrow \mathrm{NaHCO}_{3}(s)$
C. $\mathrm{Na}^{+}(a q)+\mathrm{H}^{+}(a q)+3 \mathrm{O}^{2-}(a q)+\mathrm{C}^{4+}(a q) \rightarrow \mathrm{NaHCO}_{3}(s)$
D. $\mathrm{NaHCO}_{3}(s) \rightarrow \mathrm{Na}(s)+1 / 2 \mathrm{H}_{2}(g)+{ }^{3} / 2 \mathrm{O}_{2}(g)+\mathrm{C}(s, g r)$
E. $\mathrm{Na}^{+}(\mathrm{aq})+\mathrm{HCO}_{3}^{-}(\mathrm{aq}) \rightarrow \mathrm{NaHCO}_{3}(\mathrm{~s})$
(Q) Which reaction corresponds to the standard enthalpy of formation of $\mathrm{C}_{4} \mathrm{H}_{3} \mathrm{Br}_{2} \mathrm{NO}_{2}(I)$?
A. $4 \mathrm{C}(\mathrm{s}, \mathrm{gr})+3 \mathrm{H}(\mathrm{g})+2 \mathrm{Br}(\mathrm{s})+\mathrm{N}(\mathrm{g})+2 \mathrm{O}(\mathrm{g}) \rightarrow \mathrm{C}_{4} \mathrm{H}_{3} \mathrm{Br}_{2} \mathrm{NO}_{2}(\mathrm{l})$
B. $8 \mathrm{C}(s, g r)+3 \mathrm{H}_{2}(g)+2 \mathrm{Br}_{2}(g)+\mathrm{N}_{2}(g)+2 \mathrm{O}_{2}(g) \rightarrow 2 \mathrm{C}_{4} \mathrm{H}_{3} \mathrm{Br}_{2} \mathrm{NO}_{2}(l)$
C. $4 \mathrm{C}(\mathrm{s}, g r)+3 / 2 \mathrm{H}_{2}(g)+\mathrm{Br}_{2}(l)+1 / 2 \mathrm{~N}_{2}(g)+\mathrm{O}_{2}(g) \rightarrow \mathrm{C}_{4} \mathrm{H}_{3} \mathrm{Br}_{2} \mathrm{NO}_{2}(l)$
D. $4 \mathrm{C}(\mathrm{s}, g r)+3 / 2 \mathrm{H}_{2}(g)+\mathrm{Br}_{2}(\mathrm{~s})+1 / 2 \mathrm{~N}_{2}(g)+1 / 2 \mathrm{O}_{2}(g) \rightarrow \mathrm{C}_{4} \mathrm{H}_{3} \mathrm{Br}_{2} \mathrm{NO}_{2}(I)$
(Q)The standard enthalpy of formation of sulfur dioxide $\left(\mathrm{SO}_{2}\right)$ is -296.9 kJ . What is ΔH for the formation of 16.03 g of sulfur dioxide in its standard state from its elements in their standard states?
A. 148.4 kJ
B. -296.9 kJ
C. $-4,759 \mathrm{~kJ}$
D. -148.4 kJ
E. 593.6 kJ

$$
\begin{aligned}
16.03 \mathrm{gSQ}_{2} & \times \frac{\frac{\mathrm{molSQ}_{2}}{32.07 \mathrm{gSQ}_{2}}}{} \times \frac{-296.9 \mathrm{~kJ}}{\mathrm{motSQ}_{2}} \\
& =-\mathbf{1 4 8 . 4} \mathbf{~ k J}
\end{aligned}
$$

2. Way to apply Hess's Law without needing to manipulate thermochemical equations
ΔH° reaction $=\left(\begin{array}{l}\text { Sum of all } \Delta H^{\circ}{ }_{f} \\ \text { of all of the } \\ \text { products }\end{array}\right)-\left(\begin{array}{l}\text { Sum of all } \\ \Delta H^{\circ} \text { of all of } \\ \text { the reactants }\end{array}\right)$ Consider the reaction:

$$
a A+b B \rightarrow c C+d D
$$

ΔH° reaction $=c \times \Delta H^{\circ}{ }_{\mathrm{f}}(C)+d \times \Delta H^{\circ}{ }_{\mathrm{f}}(D)$

$$
-\left\{a \times \Delta H^{\circ}{ }_{\mathrm{f}}(A)+b \times \Delta H^{\circ}{ }_{\mathrm{f}}(B)\right\}
$$

- ΔH^{ρ} rxn has units of kJ because
- Coefficients \times heats of formation have units of $\mathrm{mol} \times \mathrm{kJ} / \mathrm{mol}$ $H_{\mathrm{rxn}}^{\circ}=\sum\left[H_{\mathrm{f}}^{\circ}(\right.$ products $) \times($ moles of product $\left.)\right]$
$\sum\left[H_{\mathrm{f}}^{\mathrm{o}}(\right.$ reactants $) \times($ moles of reactant $\left.)\right]$
$\Delta H^{\rho}{ }_{\text {rxn }}$ has units of $\mathrm{kJ} \quad \Delta H^{\circ}{ }_{f}$ has units of $\mathrm{kJ} / \mathrm{mol}$

Ex. 11: Calculate $\Delta H^{\circ}{ }_{\mathrm{rxn}}$ Using ΔH_{f}°

Calculate $\Delta \boldsymbol{H}^{\circ}{ }_{\mathrm{rxn}}$ using $\Delta \boldsymbol{H}_{\boldsymbol{f}}^{\circ}$ data for the reaction

$$
\mathrm{SO}_{3}(\mathrm{~g}) \xrightarrow{ } \mathrm{SO}_{2}(\mathrm{~g})+1 / 2 \mathrm{O}_{2}(\mathrm{~g})
$$

$$
\begin{aligned}
& H_{\mathrm{rxn}}^{\circ}=\sum\left[H_{\mathrm{f}}^{\circ}(\text { products })\right.\times(\text { moles of product })] \\
& \sum\left[H_{\mathrm{f}}^{\circ}(\text { reactants }) \times(\text { moles of reactant })\right]
\end{aligned}
$$

$\Delta H^{\circ}{ }_{\text {rxn }}$ has units of kJ
ΔH° f has units of $\mathrm{kJ} / \mathrm{mol}$

$$
\begin{aligned}
& \Delta H_{\mathrm{rxn}}^{\circ}=\Delta H_{\mathrm{f}}^{\circ}\left(\mathrm{SO}_{2}(\mathrm{~g})\right)+\frac{1}{2} \Delta H_{\mathrm{f}}^{\circ}\left(\mathrm{O}_{2}(g)\right)-\Delta H_{\mathrm{f}}^{\circ}\left(\mathrm{SO}_{3}(\mathrm{~g})\right) \\
& H_{\mathrm{rxn}}^{\circ}=297 \mathrm{~kJ} / \mathrm{mol}+\frac{1}{2}(0 \mathrm{~kJ} / \mathrm{mol}) \quad(396 \mathrm{~kJ} / \mathrm{mol}) \\
& \Delta H^{\circ}{ }_{r \times n}=99 \mathrm{~kJ}
\end{aligned}
$$

(Q) Calculate $\Delta H^{\circ}{ }_{\mathrm{rxn}}$ using ΔH_{f}° for the reaction $4 \mathrm{NH}_{3}(g)+7 \mathrm{O}_{2}(g) \rightarrow 4 \mathrm{NO}_{2}(g)+6 \mathrm{H}_{2} \mathrm{O}(/)$
$H_{\mathrm{rxn}}^{p}=4 H_{\mathrm{fNO}_{2}(g)}^{p}+6 H_{\mathrm{f}_{H_{2}(f)}}^{p} 4 H_{\mathrm{fNH}_{3}(g)}^{\circ} 7 \mathrm{H}_{\mathrm{fo}_{2}(g)}^{\circ}$
$H_{\mathrm{rxn}}^{\circ}=4 \mathrm{~mol}(34 \mathrm{~kJ} / \mathrm{mot})+6 \mathrm{~mol}\left(285.9 \mathrm{~kJ} / \mathrm{mol} \mathrm{m}^{\prime}\right)$ 4 mot $46.0 \mathrm{~kJ} / \mathrm{mol}) 7$ moi($0 \mathrm{~kJ} / \mathrm{mol})$
$\Delta H^{P}{ }_{\mathrm{rxn}}=[136-1715.4+184] \mathrm{kJ}$ $\Delta \boldsymbol{H}^{\mathrm{rxn}}=-1395 \mathrm{~kJ}$

- Don't always want to know $\Delta \boldsymbol{H}$

- Can use Hess's Law and $\Delta \boldsymbol{H}^{\boldsymbol{P}}{ }_{r x n}$ to calculate $\Delta \boldsymbol{H}_{\boldsymbol{f}}^{\circ}$ for compound where not known

Example: Given the following data, what is the value of $\Delta H_{f}^{\circ}\left(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-}, a q\right)$?
$\mathrm{Na}^{+}(a q)+\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-}(a q)+3 \mathrm{H}_{2} \mathrm{O}(/) \rightarrow \mathrm{NaC}_{2} \mathrm{H}_{3} \mathrm{O}_{2} \cdot 3 \mathrm{H}_{2} \mathrm{O}(s)$

$$
\Delta H^{P} \quad{ }_{x n}=-19.7 \mathrm{~kJ} / \mathrm{mol}
$$

$\mathrm{Na}^{+}(a q)$
$\Delta H_{\mathrm{f}}=-239.7 \mathrm{~kJ} / \mathrm{mol}$
$\mathrm{NaC}_{2} \mathrm{H}_{3} \mathrm{O}_{2} \bullet 3 \mathrm{H}_{2} \mathrm{O}(s) \quad \Delta H_{\mathrm{f}}=710.4 \mathrm{~kJ} / \mathrm{mol}$
$\mathrm{H}_{2} \mathrm{O}(/)$
$\Delta H_{f}=285.9 \mathrm{~kJ} / \mathrm{mol}$

$$
\begin{gathered}
\Delta H^{\circ}{ }_{1 \times n}=\Delta H_{f}^{\circ} \quad\left(\mathrm{NaC}_{2} \mathrm{H}_{3} \mathrm{O}_{2} \cdot 3 \mathrm{H}_{2} \mathrm{O}, s\right)-\Delta H_{f}^{\circ} \quad\left(\mathrm{Na}^{+},\right. \\
a q)-\Delta H_{f}^{\circ}\left(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-}, a q\right)-3 \Delta H_{f}^{\circ} \quad\left(\mathrm{H}_{2} \mathrm{O}, /\right)
\end{gathered}
$$

Rearranging
$\Delta H_{f}^{\circ}\left(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-}, a q\right)=\Delta H_{f}^{0}\left(\mathrm{NaC}_{2} \mathrm{H}_{3} \mathrm{O}_{2} \cdot 3 \mathrm{H}_{2} \mathrm{O}, s\right)-$ $\Delta H_{f}^{\circ}\left(\mathrm{Na}^{+}, a q\right)-\Delta H^{\circ}{ }_{r x n}-3 \Delta H_{f}^{\circ} \quad\left(\mathrm{H}_{2} \mathrm{O}, \mathrm{l}\right)$
$\Delta H_{f}^{\circ}\left(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-}, a q\right)=$
$-710.4 \mathrm{~kJ} / \mathrm{mol}-(-239.7 \mathrm{~kJ} / \mathrm{mol})-(-19.7$
$\mathrm{kJ} / \mathrm{mol})-3(-285.9 \mathrm{~kJ} / \mathrm{mol})$
$=+406.7 \mathrm{~kJ} / \mathrm{mol}$
(Q)Calculate ΔH for this reaction using ΔH_{f}° data. $2 \mathrm{Fe}(s)+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{s}) \rightarrow 2 \mathrm{Fe}(\mathrm{OH})_{3}(s)+3 \mathrm{H}_{2}(g)$
$\Delta \boldsymbol{H}_{f}^{\circ}$
-285.8
-696.5

0
$\Delta H_{\mathrm{rxn}}=2 \times \Delta H_{f}^{\circ}\left(\mathrm{Fe}(\mathrm{OH})_{3}, s\right)+3 \times \Delta H_{f}^{\circ}\left(\mathrm{H}_{2}, g\right)$ $-2 \times \Delta H_{f}^{\circ}(\mathrm{Fe}, s)-6 \times \Delta H_{f}^{\circ}\left(\mathrm{H}_{2} \mathrm{O}, /\right)$
$\Delta H_{r \times n}=2$ 苗而 $\times(-696.5 \mathrm{~kJ} / \mathrm{mol})+3 \times 0-2 \times 0$ $-6 \mathrm{~mol} \times(-285.8 \mathrm{~kJ} / \mathrm{mol})$
$\Delta H^{P}{ }_{\mathrm{rxn}}=-1393 \mathrm{~kJ}+1714.8 \mathrm{~kJ}$
$\Delta \boldsymbol{H}^{\circ}{ }_{\mathrm{rxn}}=321.8 \mathrm{~kJ}$
(Q)Calculate $\Delta H^{\circ}{ }_{r \times n}$ for this reaction using ΔH_{f}° data.

$$
\begin{array}{rlcc}
& \mathrm{CO}_{2}(g)+2 \mathrm{H}_{2} \mathrm{O}(/) \rightarrow & 2 \mathrm{O}_{2}(g)+ & \mathrm{CH}_{4}(g) \\
\Delta H_{f}^{\circ} & -393.5 & -285.8 & 0
\end{array}-74.8
$$

$\Delta H^{\circ}{ }_{\mathrm{rxn}}=2 \times \Delta H_{f}^{\circ} \quad\left(\mathrm{O}_{2}, g\right)+\Delta H_{f}^{\circ} \quad\left(\mathrm{CH}_{4}, g\right)$ $-\Delta H_{f}^{\circ}\left(\mathrm{CO}_{2}, g\right)-2 \times \Delta H_{f}^{\circ}\left(\mathrm{H}_{2} \mathrm{O}_{1} /\right)$
$\Delta H^{\circ}{ }_{r \times n}=2 \times 0+1 \mathrm{~mol} \times(-74.8 \mathrm{~kJ} / \mathrm{mol}) \sim 1 \mathrm{~mol}$ $\times(-393.5 \mathrm{~kJ} / \mathrm{mol})-2 \mathrm{~mol} \times(-285.8 \mathrm{~kJ} / \mathrm{mol})$
$\Delta H^{\circ}{ }_{\mathrm{rxn}}=-74.8 \mathrm{~kJ}+393.5 \mathrm{~kJ}+571.6 \mathrm{~kJ}$
$\Delta H^{\circ}{ }_{\mathrm{rxn}}=890.3 \mathrm{~kJ}$

Calculate ΔH_{f}° for $\mathrm{FeO}(\mathrm{s})$ using the information

 below. ΔH_{f}° values are shown below each substance.$$
\begin{aligned}
& \mathrm{Fe}_{3} \mathrm{O}_{4}(\mathrm{~s})+\mathrm{CO}(\mathrm{~g}) \rightarrow \underset{? ~}{-1120.9 \mathrm{~kJ}-110.5 \mathrm{~kJ} \quad \underset{? ?}{ } \quad-393.5 \mathrm{~kJ})}+\mathrm{CO}_{2}(\mathrm{~g}) \Delta H^{0}=21.9 \mathrm{~kJ}
\end{aligned}
$$

A. 272.0 kJ
B. -816.0 kJ
C. -272.0 kJ
D. 26.00 J
E. -38.60 kJ

$$
\begin{aligned}
& H_{\mathrm{xn}}^{0}=\sum\left[H_{\mathrm{f}}^{0}(\text { products }) \times(\text { moles of product })\right] \\
& \text { Important } \left.\sum\left[H_{f}^{\circ} \text { (reactants }\right) \times(\text { moles of reactant })\right] \\
& \Delta H_{\mathrm{rxn}}=\left[\begin{array}{lll}
\mathbf{3} \Delta H_{f}^{\circ} & (\mathrm{FeO}, s)+\Delta H_{f}^{\circ} & \left(\mathrm{CO}_{2}, g\right)
\end{array}\right] \\
& -\left[\Delta H_{f}^{\circ} \quad\left(\mathrm{Fe}_{3} \mathrm{O}_{4}, s\right)+\Delta H_{f}^{\circ}(\mathrm{CO}, g)\right] \\
& +21.9 \mathrm{~kJ}=\left[\begin{array}{ll}
3 \Delta H_{f}^{\circ} & (\mathrm{FeO}, s)+-393.5 \mathrm{~kJ})]
\end{array}\right. \\
& -[-1120.9 \mathrm{~kJ}+-110.5 \mathrm{~kJ})] \\
& +21.9 \mathrm{~kJ}=\left[\begin{array}{ll}
3 \Delta H_{f}^{\circ} & (\mathrm{FeO}, s)+837.9 \mathrm{~kJ}
\end{array}\right] \\
& -816.0 \mathrm{~kJ}=3 \Delta H_{f}^{\circ} \quad(\mathrm{FeO}, s) \\
& -272.0 \mathrm{~kJ}=\Delta H_{f}^{\circ} \quad(\mathrm{FeO}, s)
\end{aligned}
$$

(Q) An endothermic reaction causes the surroundings to:

Warm up.
Become acidic.
Condense.
Decrease in temperature.
Expand.
(Q)An endothermic reaction causes the system to:

Become acidic.
Warm up.
Condense.
Decrease in temperature.
Expand.

Use Hess's law to determine the standard enthalpy of formation for the following reaction
$3 \mathrm{C}(\mathrm{s})+4 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow \mathrm{C}_{3} \mathrm{H}_{8}(\mathrm{~g})$

Use the following information:

(a) $\mathrm{C}_{3} \mathrm{H}_{8}(\mathrm{~g})+5 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 3 \mathrm{CO}_{2}(\mathrm{~g})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})$	$\Delta \mathrm{H}^{\circ}=-2219.9 \mathrm{~kJ}$
(b) $\mathrm{C}(\mathrm{s})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})$	$\Delta \mathrm{H}^{\circ}=-393.5 \mathrm{~kJ}$
(c) $\mathrm{H}_{2}(\mathrm{~g})+1 / 2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$	$\Delta \mathrm{H}^{\circ}=-285.8 \mathrm{~kJ}$

Answer: $\quad-104 \mathrm{~kJ}$

Calculate the standard enthalpy change for the reaction:

$$
2 \mathrm{C}_{8} \mathrm{H}_{18}(\mathrm{l})+17 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 16 \mathrm{CO}(\mathrm{~g})+18 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) .
$$

Given:

$$
\begin{array}{ll}
2 \mathrm{C}_{8} \mathrm{H}_{18}(\mathrm{l})+25 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 16 \mathrm{CO}_{2}(\mathrm{~g})+18 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) & \Delta \mathrm{H}^{\circ}=-11020 \mathrm{~kJ} \\
2 \mathrm{CO}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{CO}_{2}(\mathrm{~g}) & \Delta \mathrm{H}^{\circ}=-566.0 \mathrm{~kJ}
\end{array}
$$

Answer= -6492 kJ
(Q) To which one of the following reactions occurring at $25^{\circ} \mathrm{C}$ does the symbol $\Delta \mathrm{H}_{\mathrm{f}}\left[\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{I})\right]$ refer?

$$
\begin{aligned}
& 2 \mathrm{H}(\mathrm{~g})+\mathrm{S}(\mathrm{~g})+4 \mathrm{O}(\mathrm{~g}) \rightarrow \mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{l}) \\
& \mathrm{H}_{2}(\mathrm{~g})+\mathrm{S}(\mathrm{~g})+2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{I})
\end{aligned}
$$

$$
\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{I}) \rightarrow \mathrm{H}_{2}(\mathrm{~g})+\mathrm{S}(\mathrm{~s})+2 \mathrm{O}_{2}(\mathrm{~g})
$$

$$
\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{l}) \rightarrow 2 \mathrm{H}(\mathrm{~g})+\mathrm{S}(\mathrm{~s})+4 \mathrm{O}(\mathrm{~g})
$$

$$
\underline{\mathrm{H}}_{2}(\mathrm{~g})+\mathrm{S}(\mathrm{~s})+2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{H}_{2} \underline{\mathrm{SO}}_{4}(\mathrm{I})
$$

(Q) $\Delta \mathrm{H}_{\mathrm{f}}{ }_{\mathrm{f}}\left[\mathrm{HNO}_{3}(\mathrm{l})\right]: \quad(1 / 2) \mathrm{H}_{2}(\mathrm{~g})+(1 / 2) \mathrm{N}_{2}(\mathrm{~g})+(3 / 2) \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{HNO}_{3}(\mathrm{l})$
(Q) $\Delta \mathrm{H}_{\mathrm{f}}{ }^{\circ}[\mathrm{CO}(\mathrm{g})]: \mathrm{C}(\mathrm{s})+(1 / 2) \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}(\mathrm{g})$
(Q) $\Delta \mathrm{H}_{\mathrm{f}}\left[\mathrm{CO}_{2}(\mathrm{~g})\right]: \mathrm{C}(\mathrm{s})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})$

