Problem One

1) A PHY 105 student is holding a book of mass m. He walks a distance d at a constant speed v. The work the student has done on the book is:
```
zero +mgd -mgd +1/2mv 2 - 1/2mv 
```

2) Imagine you push a box of mass m a distance d across a floor with constant speed. The coefficient of kinetic friction between the box and the floor is μ_{k}. You then pick up the box, raise it to a height h , carry it back to the starting point, and put it back down on the floor. How much work have you done on the box?
$\mu_{k} \mathrm{mgd} \quad z e r o$
$\mu_{k} m g d+2 m g h$
$\mu_{k} m g d-2 m g h$
$2 \mu_{k} \mathrm{mgd}+2 \mathrm{mgh}$
3) When a ball rises vertically to a height 3 h and returns to its original position, the work done on it by the gravitational force is
zero $-6 \mathrm{mgh}-3 \mathrm{mgh}+3 \mathrm{mgh}+6 \mathrm{mgh}$
4) A 20 g particle is moving to the left at a speed of $30 \mathrm{~m} / \mathrm{s}$. How much total work (in J) must be done on the particle to make it move to the right at a speed of $30 \mathrm{~m} / \mathrm{s}$?

zero	+9	-9	+18	-18

Problem Two
5) The engine of a truck of mass 940 kg can deliver an average power of 104800 W . If the truck accelerates from rest, the speed (in m / s) after 4.5 s is: (Ignore air resistance)
31.7
11.2
15.1
4.8
36.6
6) A 100 kg box is pushed at a constant speed of $5.0 \mathrm{~m} / \mathrm{s}$ across a horizontal floor by an applied force F directed 37° above the horizontal. If the rate at which F does work on the box is 0.66 hp , the applied force F (in N) is: Hint: $1 \mathrm{hp}=746 \mathrm{~W}$
123
980
98
164
43
7) A motor lifts a 3000 kg elevator 210 m up during a time interval t at constant speed. If the rate at which the motor does work on the elevator is 362 hp , the time interval t (in s) is: Hint: 1 $h p=746 \mathrm{~W}$
23
1.7
5
14.8
19.9
8) A horse drags a heavy cart (200 kg) horizontally on a rough floor at constant speed. The power delivered by the horse is 1.06 hp . The coefficient of kinetic friction between the cart and the floor is 0.115 . The speed (in m / s) with which the cart moves across the floor is:
3.5
0.3
11.7
9.0
2.1

Problem Three

9) A 125 kg cart initially at rest is pulled by three ropes as shown. When the cart moves 100 m horizontally on a frictionless level, it's final speed (in m / s) is:

10) A box of mass m at a height h above the floor has a speed v. Its total mechanical energy is E. A second box of mass m at a height $4 h$ above the floor has a speed $2 v$. The total mechanical energy for the second box is:
4E
2E
$(2)^{1 / 2} E$
E
$(2)^{-1 / 2} E$

Problem Four
11) A box of mass m is moving with an initial speed v on a horizontal level, where the coefficient of kinetic friction is μ_{k}. The box moves a distance d and stops. If the initial speed is doubled, how far will the same box move before it stops?
4d
2d
d^{2}
d
$4 d^{2}$
12) As shown, a bead of mass 0.5 kg immersed in a certain liquid is released from rest at point A. At point B, the bead has a speed of $6 \mathrm{~m} / \mathrm{s}$. The work done on the bead (in J) by the viscosity (friction force) of the liquid is:

Problem Five

13) A 3 kg ball thrown vertically upward has reached a height of
 100 m in the presence of air resistance. The air resistance has performed -800 J of work on the ball. Determine the height (in m) the ball would reach if air resistance can be neglected.
127
100
163
196
201
14) A box of mass 18 kg is dropped from rest from a height of 80 m above the floor. The box falls vertically downward and reaches the floor with a speed of $15 \mathrm{~m} / \mathrm{s}$. The work (in $10^{3} \mathrm{~J}$) exerted by the air resistance force on the box is:

-12	-16	+12	+16	-14

15) A 0.5 kg ball thrown vertically upward with an initial speed of $4.00 \mathrm{~m} / \mathrm{s}$ has reached a maximum height of 0.8 m . What change does air resistance cause in the mechanical energy (in $\mathrm{J})$ of the ball during the upward motion?
0.08
0
16
3.92
4.9

Problem Six

16) The rigid object shown lies in a horizontal plane and is free to rotate about the pivot O. Three forces act on it: $\mathrm{F}_{\mathrm{A}}=10 \mathrm{~N}, \mathrm{~F}_{\mathrm{B}}=16 \mathrm{~N}$ and $\mathrm{F}_{\mathrm{C}}=19 \mathrm{~N}$. If $\mathrm{AO}=8 \mathrm{~m}, \mathrm{BO}=$ 4 m and $\mathrm{CO}=3 \mathrm{~m}$, what is the net torque (in N.m) about O ?

$$
\begin{array}{lllll}
+12 & -21 & +101 & -27 & +140
\end{array}
$$

17) The rigid object shown lies in a horizontal plane and is free to rotate about the pivot O . Two forces act on it; $F_{1}=4.2 \mathrm{~N}$ and $\mathrm{F}_{2}=4.9 \mathrm{~N}$. If $\mathrm{r}_{1}=1.3 \mathrm{~m}, \mathrm{r}_{2}=2.15 \mathrm{~m}$, $\theta_{1}=75^{\circ}$, and $\theta_{2}=60^{\circ}$, then the net torque (in N.m) about O is:
$\begin{array}{lllll}-3.85 & +14.37 & -14.37 & +5.27 & -1.07\end{array}$

Problem Seven

18) As shown, a rigid rod of mass m_{3} is pivoted at point A, where two masses (m_{1} and m_{2}) are hanging from it. The hanging mass m_{2} is equal to $2 m_{1}$, while the rod's mass m_{3} is equal to $3 m_{1}$. The distances L_{1} and L_{2} are measured from point A to m_{1} and m_{2}, respectively. At static equilibrium, the ratio $\left(\mathrm{L}_{1} / \mathrm{L}_{2}\right)$ is:
7/5
5/2
7/2
3/7
$2 / 5$

The figure below belongs to Q19 \& Q20:

19) As shown, a wooden beam is supported by two vertical ropes, A and B. The weight of the beam is mg $=120 \mathrm{~N}$ and its length is 5 m . Rope A is connected to the left end of the beam, while rope B is connected at a distance $\mathrm{d}=1 \mathrm{~m}$ from the right end. A box with a weight $\mathrm{Mg}=20 \mathrm{~N}$ is placed on the beam with its center of mass at $\mathrm{d}=1 \mathrm{~m}$ from rope A . If the whole system is in static equilibrium, the tension (in N) in the rope A is:

$\begin{array}{lllll}60 & 80 & 53.3 & 140 & 220\end{array}$
20) As shown, a wooden beam is supported by two vertical ropes, A and B. The weight of the beam is $\mathrm{mg}=120 \mathrm{~N}$ and its length is 5 m . Rope A is connected to the left end of the beam, while rope B is connected at a distance $d=1 \mathrm{~m}$ from the right end. A box with a weight $\mathrm{Mg}=20 \mathrm{~N}$ is placed on the beam with its center of mass at $d=1 \mathrm{~m}$ from rope A. If the whole system is in static equilibrium, the tension (in N) in the rope B is:
80
60
200
140
26.7

The figure below belongs to Q21 \& Q22:

Problem Eight

21) A patient's foot shown in the figure does contact the floor only at point P (the heel does not touch the floor). The calf muscle acts on the foot with a force at point A, while the lower leg bones act on the foot with a force at point B . If the patient's weight is 900 N , distance $\mathrm{a}=5 \mathrm{~cm}$ and distance $\mathrm{b}=15 \mathrm{~cm}$, the calf's force (in N) is:

2700 upward
2700 downward 900 downward 4500 upward 4500 downward

22) The foot shown in the figure does contact the floor only at point P (the heel does not touch the floor). The calf muscle acts on the foot with a force at point A, while the lower leg bones act on the foot with a force at point B . If the student's weight is 900 N , distance $\mathrm{a}=5 \mathrm{~cm}$ and distance $b=15 \mathrm{~cm}$, the lower leg bones' force (in N) is:

3600 downward 3600 downward 900 downward 5400 upward 5400 downward

The figure below belongs to Q23 \& Q24:

23) As shown, a PHY 105 student holds a massive ball ($\mathrm{M}=7.2 \mathrm{~kg}$) by his hand. The student's upper arm is vertical, while his lower arm (of mass 1.8 kg) is horizontal. Both of the biceps muscle and the bone of the upper arm do act on the lower arm with forces, each at a specific point as shown. The biceps' force (in N) is:
$\begin{array}{lcc}650 \text { upward } & 650 \text { downward } & 88 \text { upward } \\ 88 \text { downward } & 450 \text { upward } & \end{array}$

24) As shown, a PHY 105 student holds a massive ball ($\mathrm{M}=7.2 \mathrm{~kg}$) by his hand. The student's upper arm is vertical, while his lower arm (of mass 1.8 kg) is horizontal. Both of the biceps muscle and the bone of the upper arm do act on the lower arm with forces, each at a specific point as shown. The upper arm bone's force (in N) is:

560 downward 560 upward 88 upward 88 downward downward

Problem Nine

25) As shown, 2 kg block slides along the track with an initial speed v_{0} of $6 \mathrm{~m} / \mathrm{s}$. The blue section of the track is frictionless ($\mu=0$), while the horizontal brown section is rough $\left(\mu_{k}\right)$. On the rough section, a frictional force stops the block in a distance d. If the height difference h is 1.1 m and μ_{k} is 0.60 , what is d (in m)?

$1.2 \quad 4.5$
$4.5 \quad 2.6$
3.4
5.7
26) As shown, a block slides at point A with an initial speed of $7 \mathrm{~m} / \mathrm{s}$ along the track. All the sections of the track are frictionless until the block reaches the section L (of length 12 m), where the coefficient of kinetic friction is 0.7 . If the height differences h_{1} and h_{2} are 6 m 2 m respectively, how far (in m) through the section of friction does the block travel before it comes to a complete stop?

9.3
$\begin{array}{lll}6.3 & 10.3 & 12\end{array}$
5.7

Problem Ten

27) A 1 kg ball is located at the top of a 4 m plane inclined at 45° as shown. The ball begins to slide down the inclined plane from rest. The upper half of the inclined plane is frictionless, while the lower half is rough, with a coefficient of kinetic friction $\mu_{\mathrm{k}}=0.3$. The speed (in m / s) of the ball at the bottom of the inclined plane is:

6.9
$5.3 \quad 7.5$
0.3
1.1
28) As shown, a wooden beam with a length of 8 m and a mass of 100 kg is attached by a strong bolt to a vertical steel support at a distance $\mathrm{d}=3 \mathrm{~m}$ from the left end. The beam makes an angle $\theta=30.0^{\circ}$ with the horizontal. A huge mass $\mathrm{M}=500 \mathrm{~kg}$ is attached with a rope to the left end of the beam, and a second rope is attached at a right angle $\left(90^{\circ}\right)$ to the other end of the beam. If the whole system is in static equilibrium, the tension T (in N) in the second rope is approximately:
23807950
1190
3004
14070
29) In order to hold a beam (of weight 500 N and length 2.5 m) at rest, a PHY 105 student exerts a force P perpendicular to the beam, as shown. The vertical distance d is 1.5 m . The minimum value the coefficient of static friction between the beam and the floor can have in order for the beam not to slip is:
0.35
0.75
0.67
0.60
0.56

30) A uniform ladder leans against a vertical smooth wall and rests on a rough horizontal ground, as shown. The ladder is 10 m long and weighs 200 N . The height h is 8.0 m . A horizontal force F is applied to the ladder at distance $\mathrm{d}=2 \mathrm{~m}$ from its bottom base. The coefficient of static friction between the ladder and the ground is 0.38 . The minimum value of the force F (in N) by which the bottom base of the ladder will be on the verge of moving toward the vertical wall is:
189
76
45
35
200

