

1) A 1.728 in 3 of a substance has a mass of 36 grams, what is the density of the substance in $\mathrm{g} / \mathrm{cm}^{3}$? (1 inch $=2.54 \mathrm{~cm}$)
a) 21
b) 5.6
c) 30
d) 14
e) 1.3
2)what is the atomic weight of an element consisting of two isotopes, one with mass=64.23 amu, relative abundance $=0.260$, and one with mass=65.32 amu ?
a) 65.3 amu
b) 64.4 amu
c) 64.9 amu
d) 65.0 amu
e) 64.8 amu
2) When $250 . \mathrm{ml}$ of a 0.15 M solution of $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{~S}$ is added into $120 . \mathrm{ml}$ of a 0.053 M solution of CdSO_{4} how many grams of CdS are formed? (molar mass of CdS $=144.5 \mathrm{~g} / \mathrm{mol}$)
$\left(\mathrm{NH}_{4}\right)_{2} \mathrm{~S}(\mathrm{aq})+\mathrm{CdSO}_{4}(\mathrm{aq}) \longrightarrow \mathrm{CdS}(\mathrm{s})+\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}(\mathrm{aq})$
a) 5.4 g
b) 0.92 g
c) 2.6 g
d) 1.9 g
e) 530 g
3) Three 1.0-liter flasks are filled with $\mathrm{H}_{2}, \mathrm{O}_{2}$ and Ne , respectively at STP, wich of the following statements is true ?
a) each flask has the same number of gass molecules.
b) the velocity of the gas molecules is the same in each flask.
c) the density of all gases is the same.
d) there are twice as many Ne atoms than O_{2} and H_{2}.
e) None of the above is true .
4) Calculate $\Delta \mathrm{H}$ for the following reaction at $25.0 \mathrm{C}^{\circ}$:

$$
\begin{array}{rrrr}
\mathrm{Fe}_{3} \mathrm{O}_{4}(\mathrm{~S})+\mathrm{CO}(\mathrm{~g}) & 3 \mathrm{FeO}(\mathrm{~s})+\mathrm{CO}_{2}(\mathrm{~g}) \\
\Delta \mathrm{Hf}_{\mathrm{f}}(\mathrm{KJ} / \mathrm{mol})-1118 & -110.5 & -272 & -393.5
\end{array}
$$

a) -263 KJ
b) 54 KJ
c) 109 KJ
d) -50 KJ
e) 19 KJ
6) a 0.156 mol of methanol, $\mathrm{CH}_{3} \mathrm{OH}_{2}$ was combusted in the presence of excess oxygen in a bomb calorimeter. If the temperature of the calorimeter increased from $24.00{ }^{\circ} \mathrm{C}$ to $29.77^{\circ} \mathrm{C}$ and the heat capacity of the calorimeter and its contents was $19400 . \mathrm{J} /{ }^{\circ} \mathrm{C}$, calculate $\Delta \mathrm{U}$ for the reaction in $\mathrm{KJ} / \mathrm{mol}$.
a) $-314 \mathrm{KJ} / \mathrm{mol}$
b) $-789 \mathrm{KJ} / \mathrm{mol}$
c) $-718 \mathrm{KJ} / \mathrm{mol}$
d) $-121 \mathrm{KJ} / \mathrm{mol}$
e) $-69.5 \mathrm{KJ} / \mathrm{mol}$
7) Which statement about the four quantum numbers which describe electrons in atoms is wrong?
a) $n=$ principal quantum number, $n=1,2,3, \ldots$
b) $l=$ angular momentum quantum number, $l=1,2,3, \ldots,(n+1)$
c) $m_{l}=$ magnetic quantum number, $m_{l}=(-1), \ldots,(0), \ldots,(+1)$
d) $m_{s}=s p i n$ quantum number, $m_{s}=+1 / 2$ or $-1 / 2$
e) the magnetic quantum number is related to the orientation of atomic orbitals in space.
8) In the lewis structure of XeBr_{4} molecule, the number of lone pairs of electrons around the central Xe atom is:
a) 0
b) 1
c) 2
d) 3
e) 4
9) Which one of the following does not The octet rule?
a)
b) CBr_{2}
c) NF_{3}
d) OF_{2}
e) AsF_{3}
10) which of the following ions has the largest ionic radius?
a) Cl^{-}
b) Ca^{+2}
c) P^{-2}
d) K^{+}
e) S^{-2}
11) Which of the following four molecules is (are) polar . PH_{3}, $\mathrm{OF}_{2}, \mathrm{HF}, \mathrm{BCl}_{2}$?
a) all except BCl_{2}
b) only HF
c) only HF and OF_{2}
d) None of them
e) all of them
12) Which of the following represents the number of π bonds and σ bonds in the ten Lewis structure of $\mathrm{H}_{2} \mathrm{SO}_{4}$?
a) 6σ and 2π
b) 4σ and 2π
c) 4σ and 4π
d) 6σ and 1π
e) 5σ and 2π
13) A car is moving with a velocity of $65 \mathrm{~km} / \mathrm{hr}$, how many miles would it travel in $35 \mathrm{sec} .(1 \mathrm{mile}=1.61 \mathrm{~km})$
a) 0.39
b) 1.1
c) 2.5
d) 0.18
e) 0.56
14) Naturally occurring rubidium consists of two isotopes,
84.912 amu and 86.901 amu , what is the average atomic weight (amu) of rubidium If the fractional abundance of the heavier isotope is 0.28007
a) 85.907
b) 85.469
c) 86.021
d) 85.005
e) 86.153
15) If a sample of $\mathrm{N}_{2} \mathrm{O}_{3}$ decomposes to produce $1.381 \mathrm{~g} \mathrm{O}_{2}$ how many grams of NO_{2} are formed ? (molar mass of $\mathrm{NO}_{2}=46.01$ $\left.\mathrm{g} / \mathrm{mol}, \mathrm{O}_{2}=32.00 \mathrm{~g} / \mathrm{mol}\right)$.
$2 \mathrm{~N}_{2} \mathrm{O}_{3} \rightarrow 4 \mathrm{NO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})$
a) 4.625
b) 3.967
c) 5.520
d) 7.942
e) 1.438
16) What is the net ionic equation for the reaction that occurs when nitric acid is added to copper(II) hydroxide ?
$2 \mathrm{HNO}_{2}(\mathrm{aq})+\mathrm{Cu}(\mathrm{OH})_{2}(\mathrm{~s}) \longrightarrow \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})$
a) $\mathrm{H}^{+}(\mathrm{aq})+\mathrm{OH}(\mathrm{aq}) \longrightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{I})$
b) $2 \mathrm{H}^{+}(\mathrm{aq})+\mathrm{Cu}(\mathrm{OH})_{2}(\mathrm{~s}) \longrightarrow \mathrm{Cu}^{+2}(\mathrm{aq})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
c) $2 \mathrm{HNO}_{2}(\mathrm{aq})+\mathrm{Cu}(\mathrm{OH})_{2}(\mathrm{~s}) \longrightarrow \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})$
d) $2 \mathrm{H}^{+}(\mathrm{aq})+2 \mathrm{NO}_{2}{ }^{+}(\mathrm{aq})+\mathrm{Cu}^{+2}(\mathrm{aq})+2 \mathrm{OH}^{-}(\mathrm{aq}) \longrightarrow \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq})+$ $2 \mathrm{H}_{2} \mathrm{O}$ (I)
e) $2 \mathrm{H}^{+}(\mathrm{aq})+2 \mathrm{NO}_{2}^{+}(\mathrm{aq})+\mathrm{Cu}^{+2}(\mathrm{aq})+2 \mathrm{OH}^{-}(\mathrm{aq}) \longrightarrow \mathrm{Cu}^{+2}(\mathrm{aq})+$ $2 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})+2 \mathrm{NO}_{3}$
17) If 0.0870 g of gas occupies 33.6 ml at STP, calculate the molecular mass of the gas $(R=0.0821$ L.atm $/ K . \mathrm{mol}, \mathrm{PV}=\mathrm{nRT})$
a) 29.0
b) 41.2
c) 58.0
d) 66.4
e) 87.0
18) calculate the standard heat of formation, $\Delta \mathrm{Hf}$, for $\mathrm{FeS}_{2}(\mathrm{~s})$, given the following information:
$2 \mathrm{FeS}_{2}(\mathrm{~s})+5 \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow 2 \mathrm{FeO}(\mathrm{s})+4 \mathrm{SO}_{2}(\mathrm{~g}) \Delta \mathrm{H}^{\circ}=-1370 \mathrm{KJ}$
$\Delta \mathrm{Hf}$ for $\mathrm{SO}_{2}(\mathrm{~g})=-297 \mathrm{KJ} / \mathrm{mol} \quad \Delta \mathrm{Hf}$ for $\mathrm{FeO}(\mathrm{s})=-268 \mathrm{KJ} / \mathrm{mol}$
a) -177 KJ
b) -1550 KJ
c) -774 KJ
d) -686 KJ
e) +808 KJ
19) Calculate the change in the internal energy (ΔU) for the reaction of Ni with CO, If 158 KJ heat was evolved and 5.65 KJ work was done on the system .
$\mathrm{Ni}(\mathrm{s})+4 \mathrm{CO}(\mathrm{g}) \longrightarrow \mathrm{Ni}(\mathrm{CO})_{4}(\mathrm{~g})$
a) -158 KJ
b) 149 KJ
c) 167 KJ
d) -167 KJ
e) -149 KJ
20) State which of the following sets of quantum numbers would be impossible .
a) $n=1, l=0, m l=0, m s=+1 / 2$
b) $n=2, l=2, m l=+2, m s=+1 / 2$
c) $n=3, l=2, m l=+2, m s=-1 / 2$
d) $n=2, l=1, m l=0, m s=-1 / 2$
e) $n=2, l=1, m l=-1, m s=-1 / 2$
21) Which element has the highest first ionization energy ?
a) Be
b) B
c) C
d) N
e) 0
22) The atom having the valence shell configuration $4 s^{2} 4 p^{1}$ would be in.
a) group 6A and period 5
b) group 4B and period 4
c) group $6 B$ and period 7
d) group 7A and period 4
e) group 7B and period 4
23) Estimate the heat of reaction $(\Delta \mathrm{H})$ at 298 K for the reaction shown, given the average bond energies below.
$\mathrm{Br}_{2}(\mathrm{~g})+3 \mathrm{~F}_{2} \longrightarrow 2 \mathrm{BrF}_{3}(\mathrm{~g})$
[The bond energies of $\mathrm{Br}-\mathrm{Br}=192 \mathrm{KJ} / \mathrm{mol}, \mathrm{F}-\mathrm{F}=158 \mathrm{KJ} / \mathrm{mol}$, $\mathrm{Br}-\mathrm{F}=197 \mathrm{KJ} / \mathrm{mol}]$
a) -516 KJ
b) -410 KJ
c) -611 KJ
d) -665 KJ
e) -720 KJ
24) Which one of the following violates the octet rule?
a) PCl_{3}
b) CBr_{4}
c) NF_{3}
d) OF_{3}
e) PCl_{5}
25) The correct lewis structure for nitrogen trichloride has:
a) $3 \mathrm{~N}-\mathrm{Cl}$ bonds and a total of 10 lone pairs of electron.
b) $3 \mathrm{~N}=\mathrm{Cl}$ bonds and a total of 6 lone pairs of electrons.
c) $1 \mathrm{~N}-\mathrm{Cl}$ bond, $2 \mathrm{~N}=\mathrm{Cl}$ bonds and 7 and a total of lone pairs of electrons.
d) $2 \mathrm{~N}-\mathrm{Cl}$ bonds, $1 \mathrm{~N}=\mathrm{Cl}$ bond and a total of 8 lone pairs of electrons.
e) $3 \mathrm{~N}-\mathrm{Cl}$ bonds and a total of 9 lone pairs of electrons.
26) Consider hydrogen carbonate ion $\left(\mathrm{HCO}_{3}\right)$. After drawing the correct lewis structure(s). you would see.
a) two double bonds around the central carbon atom.
b) three single bonds around the central carbon atom.
c) four single bonds around the central carbon atom.
e) three equivalent resonance forms.
27) Which of these isoelectronic species has the smallest radius ?
a) Br^{-}
b) Sr^{+2}
c) $R b^{+}$
d) Se^{-2}
e) they are all the same radius because they have the same number of electrons.
28) A natural molecule having the general formula $A B$, has one lone pairs of electrons on A. what is the hybridization of A.
a) sp
b) $s p^{2}$
c) sp^{3}
d) $\mathrm{sp}^{3} \mathrm{~d}$
e) $s p^{3} d^{2}$
29) Which of the following four molecules are polar. $\mathrm{PH}_{3}, \mathrm{OF}_{2}$, $\mathrm{HF}, \mathrm{SO}_{3}$?
a) all except SO_{3}
b) only HF
c) only HF and OF_{2}
d) none of them
e) all of them
30) The perechloric acid $\left(\mathrm{HClO}_{4}\right)$ molecule contains:
a) 13 lone pairs 1π bond, and 4σ bonds.
b) 9 lone pairs. No π bonds, and 6σ bonds.
c) 8 lone pairs. 3π bonds, and 5σ bonds.
d) 2 lone pairs. 3π bonds, and 4σ bonds
e) 11 lone pairs. No π bonds, and 5σ bonds
31) The density of a liquid is $2.65 \mathrm{~g} / \mathrm{cm}^{3}$. Calculate the mass of $0.25 \mathrm{~m}^{3}$ of this liquid.(in Kg).
a) 7.1×10^{2}
b) 9.5×10^{3}
c) 5.0×10^{2}
d) 6.6×10^{2}
e) 8.2×10^{2}
32) The correct name for $\mathrm{P}_{2} \mathrm{O}_{3}$?
a) phosphorus(V) oxide.
b) phosphorus pentoxide.
c) diphosphorus pentoxide.
d) phsphorus oxide.
e) phosphoric oxide.
33) The mass of one molecule of a compound is
$2.03 \times 10^{-22} \mathrm{~g}$, calculate the molar mass of the compound (in $\mathrm{g} / \mathrm{mol})$, (Avogadro`s number $=6.02 \times 10^{23}$).
a) 122
b) 158
c) 192
d) 146
e) 134
34) Which of the following pairs of aqueous solutions would not produce a reaction when mixed?
a) NaNO_{3} and CuCl_{2}
b) NaSO_{4} and $\mathrm{Ba}(\mathrm{OH})_{2}$
c) $\mathrm{Ba}(\mathrm{OH})_{2}$ and HCl
d) CuCl_{2} and $\mathrm{Na}_{3} \mathrm{PO}_{4}$
e) AgNO_{3} and HCl
35) the molar mass of an unknown gas was measured by an effusion experiment. It was found that it took 60 s for a given volume of the gas to effuse, whereasthe same volume of nitrogen gas required 48 s to effuse under the same condition $\alpha \mathrm{I} / \sqrt{ } \mathrm{M}$). the molar mass (in $\mathrm{g} / \mathrm{mol}$) of the gas is?
a) 25
b) 35
c) 18
d) 31
e) 44
36) Consider the reaction: $\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{OH}(\mathrm{I})+3 \mathrm{O}_{2}(\mathrm{~g})$
$3 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})+2 \mathrm{CO}_{2}(\mathrm{~g}), \Delta \mathrm{H}=1236 \mathrm{KJ}$, then $\Delta \mathrm{U}$ (internal energy change) for the reaction (in $\mathrm{KJ} / \mathrm{mol}$) is:
a) -1231
b) -1237
c) -1251
d) -1241
e) -1246
37) When 0.0500 mol of $\mathrm{HCL}(\mathrm{aq})$ in a offee cup calorimeter, the temperature of the solution increases by $5.99^{\circ} \mathrm{C}$. What is the enthalpy change for the following reaction (in KJ)?

$$
\mathrm{HCL}(\mathrm{aq})+\mathrm{NaOH}(\mathrm{aq}) \quad \mathrm{NaCl}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I})
$$

Assume that the heat capacity of the calorimeter and is 465.4 $\mathrm{J} /{ }^{\circ} \mathrm{C}$.
a) -55.8
b) -38.6
c) 38.6
d) -0.139
e) 55.8
38) All the following statements about the quantum numbers are true axcept:
a) m_{l} has $21+I$ possible values
b) n may take values from 1 to ∞.
c) $m_{\text {। }}$ may take only the values of +1 to -1 , including zero.
d) I may take integral values from 1 to $n-1$.
e) m_{l} may take only the values of $+1 / 2$ and $-1 / 2$
39) The ground state electrone configuration of manganese atom (${ }_{25} \mathrm{Mn}$) has \qquad unpaired electrons and is \qquad ?
a) 5, paramagnetic
b) 0, diamagnetic
c) 2, paramagnetic
d) 3,paramagnetic
e) 5,diamagnetic
40) Which of the following elemnts has the largest second ionization energy?
a) Si
b) Cl
c) Na
d) S
e) Mg
41. The ground state electron configuration of ${ }_{29} \mathrm{Cu}$ atom is?
a) $[A r] 4 s^{1} 3 d^{10}$
b) $[A r] 4 s^{1} 4 d^{9}$
c) $[K r] 4 s^{1} 3 d^{10}$
d) $[K r] 4 s^{2} 3 d^{9}$
e) $[A r] 4 s^{2} 3 d^{9}$
42. which of the following isoelectronic ions has the smallest radius:
a) Ca^{+2}
b) Mg^{+2}
c) O^{-2}
d) S^{-2}
e) F^{-}
43) which of the following compounds would be expected to have the highest melting point?
a) NCl_{3}
b) OCl_{2}
c) MgCl_{2}
d) LiCl
e) CCl_{4}
44) Which of these species have two resonance structure? a) CH_{4}
b) $\mathrm{CH}_{3} \mathrm{O}$
c) $\mathrm{H}_{2} \mathrm{O}$
d) $\mathrm{NO}_{2} \mathrm{Cl}$
e) $\mathrm{H}_{2} \mathrm{~S}$
45) The formal charge on N in the Lewis structure of $\mathrm{NO}_{2}{ }^{-}$is:
a) +2
b) +1
c) 0
d) -1
e) -2
46) Which the following compounds does the octet rule?
a) SiCl_{4}
b) XeCl_{4}
c) PH_{3}
d) $\mathrm{H}_{2} \mathrm{~S}$
e) $\mathrm{NO}_{3}{ }^{-}$
47) What is the molecular geometry (shape) of $\mathrm{BrF}_{4}{ }^{-}$?
a) T-shaped
b) tetrahedral
c) square planar
d) trigonal pyramidal
e) seesaw
48) The hybridization of the central atom P, in PCl_{3} is:
a) $s p^{3}$
b) $s p^{2}$
c) sp
d) $s p^{3} d^{2}$
e) $s p^{3} d$
49) According to valence-bond theory , thebonding in ketene , $\mathrm{H}_{2} \mathrm{CCO}$, is best described as
a) five π bonds
b) three σ bonds and two π bonds
c) four σ bonds and two π bonds
d) four σ bonds and one π bond
e) five σ bonds
50) What is the volume of a 2.50 g block of metal whose density is $6.72 \mathrm{~g} / \mathrm{cm}^{3}$?
a) $16.8 \mathrm{~cm}^{3}$
b) $2.69 \mathrm{~cm}^{3}$
c) $0.095 \mathrm{~cm}^{3}$
d) $0.372 \mathrm{~cm}^{3}$
e) $1.60 \mathrm{~cm}^{3}$
51) Which is the correct name of HClO_{2}
a) hypochlorous
b)chloric acid
c) chlorous acid
d) hydrochloric
e) perchloric
52) If 2.00 moles of SiO_{2} and 4.00 moles of C reacted according to the equation below, calculate the theoretical yield of CO produced (molar mass of $\mathrm{O}=28.0 \mathrm{~g} / \mathrm{mol}$). $\mathrm{SiO}_{2}+3 \mathrm{C} \quad \mathrm{SiC}+2 \mathrm{CO}$
a) 112 g
b) 18.7 g
c) 56.0 g
d) 74.7 g
e) 14.0 g
53) Given the following net ionic equation, which of the following statements is wrong?

$$
2 \mathrm{H}^{+}(\mathrm{aq})+\mathrm{Cu}(\mathrm{OH})_{2}(\mathrm{~s}) \rightarrow \mathrm{Cu}^{+2}(\mathrm{aq})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

a) This is a redox (oxidation-reducation) reaction
b) The acid involved is a strong electrolyte
c) The base, $\mathrm{Cu}(\mathrm{OH})_{2}$, is an insoluble
d) This is a neutralization reaction
e) This could be the net ionic equation for HNO_{3} reacting with $\mathrm{Cu}(\mathrm{OH})_{2}$.
54) KHCO_{3} decoposes according to the equation below. If 0.33 mol of KHCO_{3} decomposed at a temperrature of $793 \circ \mathrm{k}$ and 1.16 atm, calculate the total volume of the gases produced.
($\mathrm{R}=0.0821$ atm.L/mol.K).

$$
2 \mathrm{k}_{2} \mathrm{CO}_{3}(\mathrm{~s}) \longrightarrow \mathrm{K}_{2} \mathrm{CO}_{3}(\mathrm{~s})+\mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
$$

a) 56 L
b) 19 L
c) 10 L
d) 37 L
e) 12 L
55) Calculate $\Delta \mathrm{H}^{\circ}{ }_{\mathrm{rxn}}$ for the following reaction at $25.0 \mathrm{C}^{\circ}$

$$
\mathrm{Fe}_{3} \mathrm{O}_{4}(\mathrm{~s})+\mathrm{CO}(\mathrm{~g}) \longrightarrow 3 \mathrm{Feo}(\mathrm{~s})+\mathrm{CO}_{2}(\mathrm{~g})
$$

$\begin{array}{lllll}\Delta \mathrm{H}_{\mathrm{f}}{ }^{\circ}(\mathrm{KJ} / \mathrm{mol}) & -1118 & -110.5 & -272 & -393.5\end{array}$
a) -263 KJ
b) 54 KJ
c) 19 KJ
d) -50 KJ
e) 109 KJ
56) When 0.180 mole of sodium nitrate, NaNO_{3}, was dissolved in water in a constant-pressure calorimeter is $1071 \mathrm{~J} / \mathrm{C}^{\circ}$ what is the enthalpy change when I mol of sodium nitrate dissolves in water?
a) $-20.5 \mathrm{KJ} / \mathrm{mol}$
b) $-151 \mathrm{KJ} / \mathrm{mol}$
c) $20.5 \mathrm{KJ} / \mathrm{mol}$
d) $151 \mathrm{KJ} / \mathrm{mol}$
e) $-98.6 \mathrm{KJ} / \mathrm{mol}$
57) The maximum number of electron that can be accommodated in a sublevel for which $l=3$ is :
a) 2
b) 14
c) 6
d) 18
e) 10
58) The valence shell electron configuration ns $2 n p^{3}$ corresponds to which one of the following elements in its ground state?
a) S
b) Ca
c) Cr
d) Br
e) P
59) The ground state electron configuration for arsenic ${ }_{33} \mathrm{As}$ is :
a) $[\mathrm{Ar}] 4 \mathrm{~s}^{2} 4 \mathrm{p}^{13}$
b) $[K r] 4 s^{2} 4 p^{1}$
c) $1 s^{2} 2 s^{2} 3 p^{6} 4 s^{2} 3 d^{10} 4 p^{1}$
d) $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{2} 3 d^{8} 4 p^{5}$
e) $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{12} 4 s^{2} 4 p^{1}$
60) Which element has the largest atomic radius?
a) Li
b) Rb
c) Na
d) Br
e) I
61) Which of the following does not have a nobel gas eletron configuration?
a) S^{-2}
b) Cu^{+}
c) Al^{+3}
d) Sb^{-3}
e) Sc^{+3}
62) The formal charge of $\mathrm{Nin}_{\text {in }}^{-}$ion is
a) +1
b) +2
c) 0
d) -1
e) -2
63) Which of the following does not obey the octet rule?
a) O_{3}
b) CBr_{4}
c) KF
d) $\mathrm{Al}_{2} \mathrm{O}_{3}$
e) SbCl_{5}
64) What is the total number of valence electrons in Lewis dot formula of the sulfite ion $\mathrm{SO}_{3}{ }^{2}$?
a) 8
b) 24
c) 26
d) 30
e) 32
65) Which of the following has two resonance structures?
a) CCl_{4}
b) $\mathrm{CH}_{2} \mathrm{O}$
c) $\mathrm{H}_{2} \mathrm{O}$
d) $\mathrm{H}_{2} \mathrm{O}$
e) $\mathrm{NO}_{2} \mathrm{Br}$
66) A triple bond contains ---- sigma bond(s) and ---- pi bond(s):
a) 0,3
b) 3,0
c) 2,1
d) 1,2
e) 3,2
67) The F-S-F bond angles in SF_{6} are:
a) 109.5°
b) 120° only
c) 90° and 120°
d) 45° and 90°
e) 90° and 180°
68) Which molecule is nonpolar?
a) $\mathrm{H}_{2} \mathrm{Se}$
b) BeH_{2}
c) PF_{3}
d) CHCl_{3}
e) SO_{2}
69) What hybrization is predicated for sulfur in the SCl_{2} ?
a) sp
b) $s p^{2}$
c) sp^{3}
d) $s p^{3} d$
e) $s p^{3} d^{2}$

