

(CHAPTERS 6/8/9/10)

1. Aman pushes an 80 N box 5.0 m upward alonga frictionless slope that makes an angle of 30 with the horizontal. his force (Fman) is parallel to the slope. If the speed of the box decreases at rate of $1.5 \mathrm{~m} / \mathrm{s}^{2}$, then the work (in J) done by the man is: Use $\mathrm{g}=10$ $\mathrm{m} / \mathrm{s}^{2}$
A) $\mathbf{- 2 0 0}$
B) +60
C) +200
D) +400
E) +140

2. Asquare metal plate 0.18 mon each side is pivoted about an axis throughpointOatits centerandperpendiculartotheplate.Calculate the netTorqueabouttheaxis(inm.N)due tothethreeforcesshownin thefigureifthemagnitudeoftheforcesareF1 $=28 \mathrm{~N}, \mathrm{~F} 2=16 \mathrm{~N}$ andF3 $=18 \mathrm{~N}$ The plate all forces are in the plane of the page.
A) 1.2 Counterclockwise
B) 3.2 Counterclockwise
C) $\mathbf{1 . 2}$ clockwise
D) 3.2 clockwise
E) $\mathbf{2 . 0}$ clockwise

F_{3}
3. Aperson with a massof 55 kg stands 2.0 m away from thewallona 6.0 mbeam asshown in the figure. The mass of the beam is 40.0 kg . Ifthe whole system is in static equilibrium, Find the vertical component of the hinge force (in N) at point O .
A) $\mathbf{5 5 5 . 3}$ down
B) 375.7 up
C) 555.3 up
D) 375.7 down

E) 731 up
4. A blood vessel of radius r is attached firmly to four vessels, each of radiusr/3. Ifthe velocity inthelargervesselisv, thenthevelocityin each of the smaller vessels is:
A) v
B) $\mathbf{4 v} / 9$
C) $\mathrm{v} / 4$
D) $\mathbf{4 v}$
E) $9 \mathrm{v} / 4$
5. A60kgstudentclimbs 30 stairs atconstantspeed in 30 seconds.

If the height of each stair is 0.25 m , calculate the average power (in Watt) of the student. (use $\mathrm{g}=9.8 \mathrm{~m} / \mathrm{s}^{2}$)
A) 339
B) 147
C) 441
D) 370
E) 294
6. Determine the mass flow rate of a given fluid whose density is $800 \mathrm{~kg} / \mathrm{m}^{3}$, velocity $=30 \mathrm{~m} / \mathrm{s}$, and area of crosssection is $20 \mathrm{~cm}^{2}$:
A) $4800 \mathrm{~kg} / \mathrm{s}$
B) $4.8 * 10^{5} \mathrm{~kg} / \mathrm{s}$
C) $1200 \mathrm{~kg} / \mathrm{s}$
D) $1.2 * 10^{5} \mathrm{~kg} / \mathrm{s}$
7. The air of velocity $15 \mathrm{~m} / \mathrm{s}$ and of density $1.3 \mathrm{~kg} / \mathrm{m}^{3}$ is entering the Venturi tube (Placed in the horizontal position) from the left. The radius of the wide part of the tube is 1.0 cm ; the radius of the thin part of the tubeistubeis 0.5 cm . ThetubeofshapeU connecting wideand thinpart ofthemaintube(seethepicture)isfilledwiththemercury ofthe density 13600 $\mathrm{kg} / \mathrm{m}^{3}$. Determine the height different $\triangle \mathrm{h}$ that stabilizes between the surface of the mercury in U Tube.
A) 0.6 cm
B) 1.6 cm
C) 2.2 cm
D) 1.1 cm
E) 7.6 cm

8. Arectangularblockofmassmisplacedinafluidandacteduponbya force F such that the block is fully submerged and hangs in static equilibrium. Ifthedensity ofthe blockis $1 / 2$ that ofthefluid, the magnitude of the force F is:
A) $\mathbf{2 m g}$
B) 3 mg
C) mg
D) $\mathrm{mg} / 3$
E) $\mathrm{mg} / 2$
9. Apipefilledcompletely with waterpassesupahillthatis 10 mhigh . Atthebottomofthe hill, aflowmetermeasuresthespeed ofthewater to be $2 \mathrm{~m} / \mathrm{s}$. Atthetop ofthehill, the flowmetermeasuresthe speed of the water to be $1 \mathrm{~m} / \mathrm{s}$. The difference in the water pressure (in Pa) betweenthebottom andthetop ofthehill is: (useg $=10 \mathrm{~m} / \mathrm{s}^{2}$)
A) $1.02 * 10^{3}$
B) $9.85 * 10^{4}$
C) $9.85 * 10^{7}$
D) $1.00 * 10^{5}$
E) $1.50 * 10^{3}$
10. A $3.90-\mathrm{kg}$ block initially at rest the top of a $4.00-\mathrm{m}$ incline with slope 45.0 degree begins to slide down the incline. The upper half of the incline is frictionless, while the lower half is rough, with a $\mu_{\mathrm{k}}=0.275$. How fast is the block moving along the incline, beforeenteringtheroughsection?
A) $\mathbf{4 . 2} \mathbf{~ m} / \mathrm{s}$ B) $5.26 \mathrm{~m} / \mathrm{s} \mathrm{C)} \mathbf{3 . 7 3 \mathrm { m } / \mathrm { s } \text { D) } 7 . 4 5 \mathrm { m } / \mathrm { s } \text { E) } 0}$
11. Aboatisfloating in both waterandoil, ifthe Poil <Pwater, which of the following statements is true:
A) Vwater $=\mathbf{V o i l}$
B) Vwater $>$ Voil
C) Vwater < Voil
D) FBoil < FBwater
$E)$ none of the above

Notice that:

12. AtrafficlighthangsfromapoleABasshowninthefigure. The uniformaluminum poleABis 7.20 mlongandhasamass of 12.0 kg . The mass of the trafficlight is 21.5 kg . Find the tension in the horizontal massless cable CD: $\left(\mathrm{g}=9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$
A) 608 N
B) 363 N
C) 570 N
D) 370 N
E) 408 N

13. A2kgblockslides downaramp intheshapeofaquarter-circle of radius 2 m from rest, as shown. Theblockreachesthe bottom of the rampwithspeed $4 \mathrm{~m} / \mathrm{s}$. Thework(in J)donebyfrictionduring theslide down the ramp is:
A) 12
B) 40
C) 0
D) 8
E) 24

14. A2.3cmthickbarofsoapisfloatingonawatersurfacesothat 1.64 cmofthebaris underwater, asinFig. Bath oil(specificgravity 0.6) is poured into the waterand floatson top ofthe water, as inthesecond Figurewhatisthedepth of theoillayer()in cm when the top ofthe soap is just level with the upper surface of the oil?
A) 0.66
B) 1.15
C) 1.1 cm
D) 0.34
E) 1.65

15. Abucketrestingonthefloorofanelevatorcontainsafluid of density ρ. When the elevator has a downward acceleration of magnitude
(a) the pressure difference between two points in afluid, separated bya vertical distance Δh, is given by:

A) $p a \Delta h$

B) $\rho g \Delta h$
C) $\rho(a+g) \Delta h$
D) $\mathrm{pga} \Delta h$
E) $\rho(g-a) \Delta h$
16. Consider that your average blood pressure is $1.33 \mathrm{~N} / \mathrm{Cm}^{\wedge} 2$ and your blood flow rate is $105 \mathrm{~cm}^{\wedge} 3 / \mathrm{s}$. The energy your heart does provide in one day to lift a 72 kg box vertically to a height (h). Calculate the height h (in m):
A) 94
B) $\mathbf{1 2}$
C) $\mathbf{3 0 8}$
D) 3
E) 171
17. The density of salt water is $\mathbf{1 . 0 2}$ greater than that of the density of fresh water. A box floats in static equilibrium in both fluids. Which of the following statements is correct?
A) The volume of the displaced water is the same in both cases
B) Buoyant force excreted by salt water is greater than that by fresh water
C) None of the statements is correct
D) Buoyant force excreted by the fresh water is greater than that by salt water
E) Buoyant force is the same for both.

Q12solution: (makeup 2020 question)
\rightarrow The angle at $A=90^{\circ}-37^{\circ}=53^{\circ}$

$$
\begin{aligned}
\text { weight of traffic light } & =m g \\
& =(21.5 * 9.8)=210.7 \mathrm{~N}
\end{aligned}
$$

\rightarrow The horizontal distance from the vertical pole to the traffic light:

$$
\begin{aligned}
& =7.2 * \sin 53^{\circ}=5.75 \mathrm{~m} \\
& \text { Torque }=210.7 \mathrm{~N} * 5.75 \mathrm{~m}=1211.56 \mathrm{~N} . \mathrm{m}
\end{aligned}
$$

\rightarrow The weight of pole $A B=m g$

$$
=12 * 9.8=117.6 \mathrm{~N}
$$

The center of mass is 3.6 meters from point A.

$$
\text { Torque }=117.6 * 3.6 * \sin 53^{\circ}=338.11 \mathrm{~N} . \mathrm{m}
$$

\rightarrow The tension in cable CD produces a counter clock wise torque on the vertical pole at point A.

$$
\begin{aligned}
& A C=3.8 \mathrm{~m} \\
& \text { torque }=\text { Tension } * 3.8 \\
& \text { Tension * } 3.8=1211.56+338.11 \\
& \text { Tension }=407.8 \quad 0 \\
& =408 \mathrm{~N}
\end{aligned}
$$

Q13solution: (makeup 2020 question)

$$
m=2 \mathrm{~kg} / g=10 \mathrm{~m} / \mathrm{s}^{2} / \mathrm{h}=2 \mathrm{~m}
$$

$$
u_{i}=0 \text { (at rest), } u_{f}=4 \mathrm{~m} / \mathrm{s} \text { (at bottom) }
$$

\rightarrow Applying work-energy theorem:

$$
\begin{equation*}
\omega_{C}+\omega_{\nu C}=\Delta K E \tag{1}
\end{equation*}
$$

\rightarrow Work done by gravity $=m g h$ (conservative)
\rightarrow work done by normal force $=0$ (conservative)
\rightarrow work done by friction force $=\omega_{f}$ (non-conservative)

$$
\rightarrow \Delta K E=\frac{1}{2} m\left(v_{f}^{2}-v_{i}^{2}\right)
$$

Put it on (1) \Rightarrow

$$
\begin{aligned}
& m g h+0+\omega_{\rho}=\frac{1}{2} m\left(v_{\rho}^{2}-v_{i}^{2}\right) \\
& w_{\rho}=\frac{1}{2} m\left(v_{f}^{2}-v_{i}^{2}\right)-m g h \\
& w_{\rho}=\frac{1}{2} * 2 *\left(4^{2}-0^{2}\right)-2 * 10 * 2 \\
& \omega_{\rho}=16-40=-24 \mathrm{~J} \\
& \omega_{\rho}=-24 \mathrm{~J}
\end{aligned}
$$

negative sign tells that work done was in opposite direction of movement of mass.

Q14 solution: (final 2019question)

Before the oil is added:

$$
\begin{align*}
W_{\text {soap }} & =B_{\text {water }} \tag{1}\\
& =\rho_{\text {water }}(A y) g .
\end{align*}
$$

After the oil is added:

$$
\begin{aligned}
W_{\text {soap }} & =B_{\text {water }}+B_{\text {oil }} \\
& =\rho_{\text {water }}\left[A\left(h-y_{\text {oil }}\right)\right] g+\rho_{\text {oil }}\left(A y_{\text {oil }}\right) g,
\end{aligned}
$$

Given : $h=2.3 \mathrm{~cm}$,

$$
y=1.64 \mathrm{~cm},
$$

$$
\text { specific gravity }=\frac{\rho_{\text {oil }}}{\rho_{\text {water }}}=0.6 \text {. }
$$

Let A be the surface area of the top or bottom of the bar. The weight of the soap bar is equal to the buoyant force when it floats in water alone:

$$
\begin{gathered}
F_{\text {net }}=B-W_{\text {soap }}=0 \\
B=m_{\text {fluid }} g \\
\rho=\frac{m}{V} \\
V=A y
\end{gathered}
$$

since $y_{o i l}$ is the depth of the oil layer.
Setting Eq. 1 equal to Eq. 2, we have

$$
\begin{align*}
\rho_{\text {water }}(A y) g= & \rho_{\text {water }}\left[A\left(h-y_{\text {oil }}\right)\right] g \\
& +\rho_{\text {oil }}\left(A y_{\text {oil }}\right) g \\
\rho_{\text {water }} y= & \rho_{\text {water }} h-\rho_{\text {water }} y_{\text {oil }} \\
& +\rho_{\text {oil }} y_{\text {oil }} \\
\left(\rho_{\text {water }}-\rho_{\text {oil }}\right) y_{\text {oil }}= & \rho_{\text {water }}(h-y) \\
y_{\text {oil }}= & \frac{h-y}{1-\frac{\rho_{\text {oil }}}{\rho_{\text {water }}}} \tag{3}\\
= & \frac{(2.3 \mathrm{~cm})-(1.64 \mathrm{~cm})}{1-0.6} \\
= & 1.65 \mathrm{~cm}
\end{align*}
$$

Q15 solution:
(final 2019 question)

D; $\Delta \mathrm{P}=\frac{\text { Force on the bottom }}{\text { Area of the bottom }}$
Where the force on the bottom is equal to the normal
$\mathrm{N}-\mathrm{mg}=-\mathrm{ma} \Rightarrow \mathrm{N}=\mathrm{m}(\mathrm{g}-\mathrm{a})$
$\Rightarrow \mathrm{N}=\rho \mathrm{Ah}(\mathrm{g}-\mathrm{a})$
So: $\Delta \mathrm{P}=\frac{\mathrm{N}}{\mathrm{A}}=\frac{\rho \mathrm{A}^{\prime h}(\mathrm{~g}-\mathrm{a})}{\AA}=\rho \mathrm{h}(\mathrm{g}-\mathrm{a})$

(CHAPTERS 6/8/9 Continued)

1. The engine of a truck of mass 940 Kg can deliver an average power of exactly 104800 W . If the truck accelerates from rest, the speed in (m / s) after 4.5 s is : (Ignoring Air resistance)
A) 31.7
B) 36.6
C) 4.8
D) 11.2
E) 15.1
2. kg ball is located at the top of 4 m plane inclined at 45 above the horizon as shown, the ball begins to slide down the plane from rest. The upper half of the inclined plane is frictionless, while the lower haf is rough, with a coefficient of kinetic friction $(\boldsymbol{\mu}(\mathrm{k})=0.3)$. The speed in (m / s) of the ball at the bottom of the inclined plane is :
A) 1.1
B)6.9
C) 7.5
D) 0.3

E)5.3
3. A horse drags a heavy cart (200 Kg) horizontally on a floor at a constant speed. The power delivered by the horse is 1.06 hp . The coefficient of kinetic friction between the cart and the floor is 0.115 . The speed in (m / s) with which the cart moves across the floor is: (HINT: $1 \mathrm{hp}=746 \mathrm{~W}$)
A)11.7
B) 3.5
C) 2.1
D) 0.3
E) 9.0
4. A box of mass (m) at a height (h) above the floor has a speed (v). let the total mechanical energy be (E). A second box of mass m at a height (4h) above the floor has a speed of (2 v). The total mechanica energy for the second box is :
A) E
B) 4 E
C) $2^{\frac{1}{2} E}$
D) 2 E
E) $2^{\frac{-1}{2} E}$
5. When a ball rises vertically to a height of (3h) and returns to its original position. the work done on it by the gravitational force is :
A) +6 mgh
B) $\mathbf{- 6 m g h}$
C) 3 mgh
D)-3mgh
E)Zero
6. A box of mass 18 kg is dropped from rest to a height of 80 m above the floor. The box falls vertically downward and reaches the floor with a speed of $15 \mathrm{~m} / \mathrm{s}$. The work done $\left(10^{3} \mathrm{~J}\right)$ exerted by the air resistance force on the box is :
A)-12
B)-14
C) +12
D)+16 E)-16
7. The figure shows a PHY-105student with a mass of 83 Kg . Determine the change in the total mechanical energy (in $10^{+4} \mathrm{~J}$) between the initial state (speed of $6.5 \mathrm{~m} / \mathrm{s}$ and height of 50 m) and the final state (speed of $4.5 \mathrm{~m} / \mathrm{s}$ and height of 28m) :

A) 1.53
B) 1.89
C) $\mathbf{- 2 . 2 5}$
D) $\mathbf{- 2 . 3 6}$
E) $\mathbf{- 1 . 8 0}$
8. In order to hold a beam (of weight 500 N and length 2.5 m) at rest. a PHY-105 student exerts a Force P perpendicular to the beam as shown. The vertical distance is 1.5 m . The minimum value for the coefficient of static friction between the beam and the floor can have for the beam not to slip is :

A) 0.67
B) $\mathbf{0 . 6 0}$
C) 0.35
D) 0.56
E) 0.75
9. A patient's foot shown in the figure does contact the floor only at P (the heel does not touch the floor). The Calf muscle acts on the foot with a force at Point (A), while the lowe leg bones act on the foot with a force at Point (B). if the patient's weight is 900 N , distance $a=5 \mathrm{~cm}$ and distance $b=15 \mathrm{~cm}$. the lower leg bones force (in N) is :
A) $\mathbf{3 6 0 0}$ upward
B) 900 Downward
C) $\mathbf{5 4 0 0}$ downward
D) 3600 downward

10. As shown, a rigid rod of mass (M3) is pivoted at point A, where t two masses ($M 1$ and $M 2$) are hanging from it. The hanging mass $M 2$ is e equal to 2M1, while the rod's mass M3 is equal to 3M1. The distances L1 and L2 are measured from point A to M1 and M2 RESPECTIVELY. At static equilibrium, the Ratio (L1/L2) :

A) $\frac{2}{5}$
B) $\frac{5}{2}$
C) $\frac{5}{7}$
D) $\frac{7}{5}$
E) $\frac{3}{7}$
11. There are two forces acting upon a box as it moves down an incline from Point A to Point B: 2 N applied force directed down the incline and 10 N frictional force. Point A and B are 5 m apart. If the kinetic energy of the box increases by 35 J between A and B, the change in the gravitational potential energy (in J) between A and B is :
A)-75
B)+75
C) +95
D) $\mathbf{- 1 0}$
E)-95
12. Imagine you push a box of mass (M) a distance across a floor with constant speed .the coefficient of kinetic friction between the box and the floor is μ_{k}. You then pick up the box ,raise it to a height H , carry it back to the starting point and put it back down on the floor. How much work have you done on the box ?
A)Zero
B) $u_{k} m g d-2 m g h$
C) $u_{k} m g d+2 m g h$
D) $2 u_{k} m g d+2 m g h$
E) $u_{k} m g d$
13. A uniform rod of mass M and length L is free to rotate about the pivot as shown in the figure, The net torque (in N.m) on the rod when the force F acts on it is :

A) 4.7 clockwise
B) 2.1 clockwise
C) 2.6 counterclockwise
D) 7.3 counterclockwise
E) 7.3 clockwise
14. As shown, a bead of mass 0.5 Kg immersed in a certain liquid is released from rest at point A. At point B , the bead has a speed of 6 m / s. The work done on the bead (in J) by the viscosity (friction force) of the liquid is :

A) +9
B)-15
C)-5.7
D)-9
E) +5.7
15. The cart shown is heading left towards a wall, colliding with it and bouncing back to the right. The loss in the mechanical energy (In J) during the bounce is: (Assume that right is the positive direction in the coordinate system).
A) +15
B) $\mathbf{+ 2 0}$

C) -15
D) +5

E) +25
16. As shown, the massless bar is hinged to the wall. A cable supports a mass M by making an angle θ with the horizontal. One of the following statements is correct :

A) As $\boldsymbol{\theta}$ approaches zero the tension \mathbf{T} in the cable approaches zerp
B) As $\boldsymbol{\theta}$ approaches zero, the tension \mathbf{T} in the cable approaches $\mathbf{M G}$
C) As θ approaches 90 , then tension T in the cable approaches M
D) As θ approaches zero,the force from the wall on the bar approaches zero
17. A 125 Kg cart initially at rest is pulled by three ropes at once as shown . When the cart moves a distance of 100 M horizontally on a frictionless level, its final speed (In Km/hr) :

A) 19
B)27
C) 70
E) 24
D) 86
18. As shown, a PHY-105 student holds a massive ball $(M=7.2 \mathrm{Kg})$ by his hand. The student's upper arm is vertical ,while his lower arm (of mass 1.8 Kg) is horizontal .Both the biceps muscle and the bone of the upper arm do act on the lower arm with forces, each at a specific point as shown. The upper arm bone's force (In N) is :

A)560 upward

B)560 downward
C)88 upward
D)320 downward
E)88 downward

19. As shown, a block slides at point A with an initial speed of $7 \mathrm{~m} / \mathrm{s}$ along the track. All the sections of the track are frictionless until the block reaches the section L (Of length 12 m), where the coefficient of kinetic friction is 0.7 . If the height difference h_{1}, h_{1} are $6 \mathrm{~m}, 2 \mathrm{~m}$ respectively, how far (In m) through the section of friction does the block travel before it comes to a complete stop ?

A) 10.3
B) 9.3
C) 5.7
D) 6.3
E) 12
20. As shown, 2 Kg block slides along the track with an initial speed Vo of $6 \mathrm{~m} / \mathrm{s}$. The blue section of the track is frictionless, while the horizontal brown section is rough . On the rough section, a frictional force stops the block in a distance Of (d). If the height difference h is 1.1 m and μ_{k} is 0.60 . What is d (In m) ?

A) 4.5
B) 3.4
C) 1.2
D)5.7
E) 2.6
21. The figure shows two blocks released from rest, block $A(1 \mathrm{Kg})$ and block B (2 Kg). The frictionless surface is inclined at an angle of 30 above the horizon. If the pulley has a negligible mass, what is the total kinetic energy of the two blocks (In J) when block B has fallen 25 cm ?

A) 0.5
B) $\mathbf{2 . 7 8}$
C) 3.68
D) 7.35
E) 6.13
22. The rigid object shown lies in a horizontal plane and is free to rotate around the pivot. Two forces act on it denoted by $F_{1}=4,2 \mathrm{~N}, F_{2}=4,9 \mathrm{~N}$ Let $r_{1}=1,3 m r 2=2,15 m \theta_{1}=75^{\circ} \theta_{2}=60^{\circ}$, then the net torque (In N.m) about O is :

A))-14.37
B) $\mathbf{- 1 . 0 7}$
C) 5.27
D) 14.37
E) -3.85
23. As shown ,a wooden beam with a length of 8 m and a mass of 100 kg is attached by a strong bolt to vertical steel support at a distance $d=3$ m from the left end. The beam makes an angle $(\theta=30)$ wit the horizontal. A huge mass $\mathrm{M}=500 \mathrm{Kg}$ is attached with a rope to the left end of the beam and a second rope is attached to a right angle (90°) to the other end of the beam .If the whole system is in static equilibrium, the tension $T(\operatorname{In~} N$) in the second rope is approximately :
A)7950
B) $\mathbf{1 1 9 0}$
C) 2380

D) $\mathbf{3 0 1 0}$
E) 14070
24. As shown, a horizontal force F in pushing a 1.4 Kg block up a frictionless 14^{0} incline from the point A to point B which are 1.2 m apart. The work exerted by a force denoted by F on the block is 5 J . If the kinetic energy at point B is 4 J . The kinetic energy (In J) at point A is :
A) 0
B) 4
C) 7.2
D) 3
E) 5

25. The figure shown a constant Force denoted by $F_{a}(82 \mathrm{~N})$ acts on a box (3.00 Kg) at angle ($\varnothing=53$). As a result, the box moves up the frictionless hill at a constant speed. The work (In J) exerted by that force on the box when the box has inclined a vertical distance of $h=0.150$ is :
A) $\mathbf{4 . 4 1}$
B) 9.8
C) 7.4
D) Zero
E) 12.3
26. The $53-\mathrm{Kg}$ uniform beam shown is about $5.0-\mathrm{m}$ long and is supported in a horizontal position by a hinge and a cable. The beam is in a complete static equilibrium when the angle is $(\theta=60)$. As a result, the x-component force (In N) exerted by the hinge on the beam is about:
A) $\mathbf{+ 5 2 0}$
B) $\mathbf{+ 1 5 0}$
C) +260
D) $\mathbf{- 2 6 0}$
E) -150

Note :The following questions on the topics of Chapters $(6 / 8 / 9)$ are from the final exam 2020:

27. Three forces act on the foot as shown. F_{H} is the force exerted by the Achilles tendon on the heel, F_{j} is the force exerted by the ankle joint on the foot. N is the force exerted by the ground on the toes. The foot is in a complete static equilibrium at the moment of consideration . The magnitude of F_{j} (In terms of the magnitude of the force N) is :
A) $0.76 * N$
B) $1.07 * N$
C) $3.11 * N$
D) $\quad 2.39 * N$
E) $2.80 * N$

): اصعب سؤ ال بفاينل 020
28. The board shown is at a complete static equilibrium as it rests on the two pivots A and B, which are $4-m$ apart. A $60-\mathrm{Kg} 105$-physics student walks slowly towards the right end of the board until he feels that the board is about to tip and lose contact with the pivot A.At the tipping moment, determine how far (In m) the student is from the pivot B. Assume that the length of the board is about $6-\mathrm{m}$ and its mass is 90 Kg .
A) 2.0
B) 1.5
C) $\quad 1.0$

Floor

D) 0.5
E) 0.8
29. As shown, a penguin inside a box (total load mass $4-\mathrm{Kg}$) . initially with zero kinetic energy, is displaced up a frictionless inclined plane by a $50-\mathrm{N}$ force . The magnitude of the normal force on the loaded box from the incline is 13.41 N . When the loaded box is displaced 3 m up the incline, it's speed (In m / s) is :
A) 4.41
B) $\mathbf{1 1 . 4 1}$
C) $\mathbf{7 . 4 1}$
D) $\mathbf{7 0 . 0}$
E) $\quad 3.29$

30. A box of mass M is pushed on a rough horizontal surface by an external force ($\mathrm{F}=9.5 \mathrm{~N}$ And the angle theta $=60$ degrees) as shown in the figure below. As the force F pushed the box a distance $d=1.0 \mathrm{~m}$, the kinetic energy of the box changes from 4 J at point A to 6 J at point B, find the work done on the box by the frictional force between Point A and B :

A) $\mathbf{- 2 . 5}$
B) -2.8
C) +2.5
D) $\mathbf{+ 2 . 8}$
E) -3.0
31. A horizontal plate $O A B$ of a triangular shape is pivoted at point O. Three forces act on the plate as shown in the figure. $\mathrm{F} 1=6.0 \mathrm{~N}$, $\mathrm{F} 2=7.0 \mathrm{~N}$ and $\mathrm{F} 3=7.0 \mathrm{~N} . \mathrm{F} 2$ is perpendicular to OB . Find the net torque about the vertical axis passing through point O .
A) +2.5
B) $\mathbf{+ 4 . 3}$
C) +2.8
D) -2.5
E) +3.3

32. A PHY-105 student is investigating the rotational motion of a yo-yo with a mass of 100 g . The outer radius (R) of the yo-yo is 4.7 times greater than the inner radius (r), as shown in the figure. The PHY105 student noticed that the yo-yo had reached a complete static equilibrium when a mass m was suspended from its outer edge. The hanging mass $\mathrm{m}(\mathrm{In} \mathrm{g})$ is :
A) $\mathbf{1 0 4}$
B) 39
C) 27
D) 8
E) 19

33. We wish to put a car in equilibrium by putting it with a cable as shown in the figure. The 1130-KG car is held in place when the cable makes an angle 31.0 with the frictionless incline. The incline itself makes an angle 25.0 with the horizontal .The normal force in (N) exerted on th car by the incline :
A) $7,2 * 10^{3}$
B) $\mathbf{1 , 1} \mathbf{1} \mathbf{1 0}^{\mathbf{4}}$
C) $1,1 * 10^{3}$
D) $\mathbf{2 , 4} \mathbf{4} \mathbf{1 0}^{\mathbf{3}}$
E) $4,8 * 10^{3}$

34. A 2 m steel rod is hinged as shown. The net torque (In N.m) exerted by the two forces on the rod about a vertical axis passing through tha hinge is :

A) 8.7, clockwise
B) 26, clockwise
C) Zero
D) 8.7, counterclockwise
E) 26, counterclockwise
35. From rest, a $2,3 \mathrm{Kg}$ block slides down a frictionless hill and across and then across a rough patch with a length of about 10.00 cm , which ha\$ a kinetic coefficient of 0.64 . As shown, the velocity of the block after crossing the rough patch is about $3.5 \mathrm{~m} / \mathrm{s}$ directed to the left. What is the vertical height of the hill denoted by h in (m / s) :

A) 0.69
B) 0.56
C) 1.06
D) 0.96
E) 0.62
36. A 5.0 kg box slides down a 30.00 degrees incline with an initial speed of $3.5 \mathrm{~m} / \mathrm{s}$. The coefficient of kinetic friction between the box and the incline is 0.38 . What is the acceleration of the block in ($\mathrm{m} / \mathrm{s}^{\wedge} 2$) ?
A) 1.67 up
B) 1.67 down
C) 0
D) 1.24 up
E) 1.24 Down
37. The rod $A B$ is 7.2 m long and has a mass of 6 Kg . the 21.5 kg traffic light hangs from the rod. The tension (In N) in the horizontal massles cable CD is :
A) $\mathbf{3 7 0}$
B) $\mathbf{3 6 3}$
C) 408
D) 608
E) 570
38. The speed of the truck just before it goes up a frictionless hill ($\theta=$ 15 degrees) is $130 \mathrm{~km} / \mathrm{h}$. The truck's mass is $1.2^{*} 10^{\wedge} 4 \mathrm{~kg}$. The minimum length of the hill, L (in m), needed so that the truck will

A) 1808.8
B) 1048.7
C) 256.8
D) 66.5
E) 13.3
39. As shown, three forces of equal magnitude act on an object at the origin. The force F1 points into the screen. Rank the magnitude of the torque created by these forces at point P1 in descending order (larges. first):

A) $\mathrm{F} 3, \mathrm{~F} 2, \mathrm{~F} 1$

B) $\mathrm{F} 2, \mathrm{~F} 1, \mathrm{~F} 3$
C) $\mathrm{F} 1, \mathrm{~F} 2, \mathrm{~F} 3$
D) $F 1=F 2$,
E) $\mathrm{F} 1, \mathrm{~F} 3, \mathrm{~F} 2$

40. As shown, a wooden rod leans against a ball and rests on a rough horizontal level. The ball is made of pure silk and has a radius of 12.4 cm . The rod is 76.2 cm long and has a mass of 333 g . The rod is in a completely static equilibrium at the moment of consideration. The horizontal component of the force (in N) exerted by the rough level on the rod is:
A) 0.47
B) 0.78
C) $\mathbf{1 . 1 6}$
D) $\mathbf{3 . 0 2}$
E) 1.9

Success is not in what you have, but who you are!

