The second exam for chemistry 101

2021
(Past paper)

Good luck! <3
By: Nagham Sweidan
1.If 636.0 mL of nitrogen gas, measured at 488.9 mmHg and $22.3^{\circ} \mathrm{C}$, reacts with excess iodine according to the following reaction, what mass of nitrogen triiodide is produced? $\mathrm{N} 2(\mathrm{~g})+3 \mathrm{I} 2(\mathrm{~s}) \rightarrow 2 \mathrm{NI} 3(\mathrm{~s})$
a. 3.33
b. 0.472 g
c. 176 g
d. 13.3 g
e. 6.66 g

ANSWER: B

2. Using two or more of the following,
$\mathrm{N} 2(\mathrm{~g})+3 / 2 \mathrm{O} 2(\mathrm{~g}) \rightarrow \mathrm{N} 2 \mathrm{O} 3(\mathrm{~g}) ; \Delta \mathrm{H}^{\circ}=83.7 \mathrm{KJ}$
$\mathrm{N} 2(\mathrm{~g})+\mathrm{O} 2(\mathrm{~g}) \rightarrow 2 \mathrm{NO}(\mathrm{g}) ; \mathrm{H}^{\circ}=180.4 \mathrm{KJ}$
$1 / 2 \mathrm{~N} 2(\mathrm{~g})+\mathrm{O} 2(\mathrm{~g}) \rightarrow \mathrm{NO} 2(\mathrm{~g}) ; \Delta \mathrm{H}^{\circ}=33.2 \mathrm{KJ}$
$1 / 2 \mathrm{~N} 2(\mathrm{~g})+3 / 2 \mathrm{H} 2(\mathrm{~g}) \rightarrow \mathrm{NH} 3(\mathrm{~g}) ; \Delta \mathrm{H}^{\circ}=45.9 \mathrm{KJ}$

Determine ΔH° for the following reaction. $\mathrm{NO}(\mathrm{g})+\mathrm{NO} 2(\mathrm{~g}) \rightarrow \mathrm{N} 2 \mathrm{O} 3(\mathrm{~g})$
a. $\quad-207.1 \mathrm{kj}$
b. 207.1 kj
c. $\quad 39.7 \mathrm{kj}$
d. 24.3 kj
e. $\quad-39.7 \mathrm{kj}$

ANSWER: B
3. When the value between the $2.00-\mathrm{L}$ bulb, in which the gas pressure is 2.50 atm , and the $3.00 \mathrm{-l}$ bulb, in which the gas pressure is 1.50 atm , is opened, what will be the final pressure in the two bulbs? Assume the temperature remains constant.
a. 4.00atm
b. 2.17 atm
c. 1.83atm
d. 2.10atm
e. 1.90atm
4. What volume of ammonia gas, measured at 547.9 mmHG and $27.6^{\circ} \mathrm{C}$ is required to produce 8.98 g of ammonium sulfate according to the following balanced chemical equation?
$2 \mathrm{NH} 3+\mathrm{H} 2 \mathrm{SO} 4(\mathrm{aq}) \rightarrow(\mathrm{NH} 4) \mathrm{SO} 4(\mathrm{~s})$
a. 0.00397 L
b. 18 L
c. 4.65 L
d. 1.16 L
e. 0.000992 L
5.When 50.0 , L of 1.27 M of $\mathrm{HCl}(\mathrm{aq})$ is combined with 50.0 mL of 1.32 M of $\mathrm{NaOH}(\mathrm{aq})$ in a coffee-cup calorimeter, the temperature of the solution increases by $8^{\circ} \mathrm{C}$. what is the change in enthalpy for this balanced reaction? $\mathrm{HCl}(\mathrm{aq})+\mathrm{NaO}(\mathrm{aq}) \rightarrow \mathrm{NaCl}(\mathrm{aq})+\mathrm{H} 2 \mathrm{O}(\mathrm{I})$; assume
that the solution density is $1.00 \mathrm{~g} / \mathrm{mL}$ and the specific heat capacity of the solution is $4.18 \mathrm{~J} / \mathrm{g} .{ }^{\circ} \mathrm{C}$
a. 55.8 KL
b. -51.5 KJ
c. -55.8 KJ
d. 51.5 KJ
e. -26.8 KJ
6. When 56.8 g of lead reacts with 3.50 L of oxygen gas, measured at 1.00 atm and $25.0^{\circ} \mathrm{C}, 60.1 \mathrm{KJ}$ of heat is released at constant pressure. What is ΔH° for this reaction? ($\mathrm{R}=0.0821 \mathrm{~L} . \mathrm{atm} /(\mathrm{K} . \mathrm{mol})$)
$2 \mathrm{~Pb}(\mathrm{~s})+\mathrm{O} 2(\mathrm{~g}) \rightarrow 2 \mathrm{PbO}(\mathrm{s})$
7. How much heat is evolved upon the complete oxidation of 6 g of aluminum at $25^{\circ} \mathrm{C}$ and 1 atm pressure?
(For Al 2 O 3 is $-1676 \mathrm{KJ} / \mathrm{mol}) 4 \mathrm{Al}(\mathrm{s})+3 \mathrm{O} 2(\mathrm{~g}) \rightarrow 2 \mathrm{Al} 2 \mathrm{O} 3(\mathrm{~s})$)
a. 85.59 kJ
b. 171.1 kJ
c. 342.3 kJ
d. 684.7 kJ
e. $9.238 \times 10^{\wedge} 3 \mathrm{KJ}$

ANSWER: B

8.86.9-g sample of chromium ($\mathrm{s}=0.447 \mathrm{~J} /\left(\mathrm{g} .{ }^{\circ} \mathrm{C}\right.$), initially at $338.33^{\circ} \mathrm{C}$, is added to an insulated vessel containing
189.9 g of water $\left(\mathrm{s}=4.18 \mathrm{~J} /\left(\mathrm{g} .{ }^{\circ} \mathrm{C}\right)\right.$) initially at $16.17^{\circ} \mathrm{C} . A t$ equilibrium, the final temperature of the metal-water mixture is $28.06^{\circ} \mathrm{C}$. how much heat was absorbed by the water? The heat capacity of the vessel is $0.220 \mathrm{KJ} /{ }^{\circ} \mathrm{C}$.
a. 9.43 KJ
b. 15.2 KJ
c. 12 KJ
d. 6.82 KJ
e. 112 KJ
9. A sample of hydrogen was collected by water displacement at $23.0^{\circ} \mathrm{C}$ and an atmospheric pressure of 735 mmHG .Its volume is 568 mL . After water vapor is (removed), what volume would the hydrogen occupy at the same conditions of pressure and temperature? (The vapor pressure of water at $23.0^{\circ} \mathrm{C}$ is 21 mmHG).
a. 552 mL
b. 509 mL
c. 568 mL
d. 585 mL
e. 539 Ml
10. A small amount wet of hydrogen gas (H2) can be prepared by the reaction of zinc with excess hydrochloric acid and trapping the gas produced in an inverted tube initially filled with water. If the total pressure of the gas in the collection tube is 757.9 mmHG at $25^{\circ} \mathrm{C}$, what is the
partial pressure of the hydrogen? The vapor pressure of water is 23.8 mmHG .
a. 781.7 mmHG
b. 734.1 mmHG
c. 47.7 mmHG
d. 32.8 mmHG
e. 757.9 mmHG
11. What volume of sulfur trioxide gas, SO 3 , has the same number of atoms 4 L of helium gas at the same temperature and pressure?
a. 4 L
b. 20 L
c. 16 L
d. 1 L
e. 0.8 L
12. In a certain experiment, 0.7000 mol of hydrogen gas reacted with 0.7000 mol of solid iodine at a constant 1 atm pressure, producing 14000 mol of solid hydrogen iodide and absorbing 36.9 KJ of heat in the process, which of the following thermochemical equations correctly describes this experiment?
a. $\mathrm{H} 2(\mathrm{~g})+\mathrm{I} 2(\mathrm{~s}) \rightarrow 2 \mathrm{HI}(\mathrm{s}), \Delta \mathrm{H}^{\circ}=73.8 \mathrm{KJ}$
b. $\mathrm{H} 2(\mathrm{~g})+\mathrm{I} 2(\mathrm{~s}) \rightarrow 2 \mathrm{HI}(\mathrm{s}), \Delta \mathrm{H}^{\circ}=-36.9 \mathrm{KJ}$
c. $\mathrm{H} 2(\mathrm{~g})+\mathrm{I}(\mathrm{s}) \rightarrow 2 \mathrm{HI}(\mathrm{s}), \Delta \mathrm{H}^{\circ}=36.9 \mathrm{KJ}$
d. $\mathrm{H} 2(\mathrm{~g})+\mathrm{I} 2(\mathrm{~s}) \rightarrow 2 \mathrm{HI}(\mathrm{s}), \Delta \mathrm{H}^{\circ}=-52.72 \mathrm{KJ}$
e. $\mathrm{H} 2(\mathrm{~g})+\mathrm{I} 2(\mathrm{~s}) \rightarrow 2 \mathrm{HI}(\mathrm{s}), \Delta \mathrm{H}^{\circ}=-52.72 \mathrm{KJ}$
13. a bomb calorimeter has a heat capacity of $2.47 \mathrm{KJ} / \mathrm{K}$. When a0.106-g sample of certain hydrocarbon was burned in this calorimeter, the temperature increased by 2.14 K . calculate the energy of combustion for 1 g of the hydrocarbon?
a. $-2.33 \times 10^{\wedge} 3 \mathrm{~J} / \mathrm{g}$
b. $-0.560 \mathrm{~J} / \mathrm{g}$
c. $-4.99 \times 10^{\wedge} 5 \mathrm{~J} / \mathrm{g}$
d. $-5.29 \mathrm{~J} / \mathrm{g}$
e. $-0.120 \mathrm{~J} / \mathrm{g}$
14. What is the partial pressure of carbon dioxide in a container that contains 3.63 mol of oxygen, 1.49 mol of nitrogen, and 4.49 mol of carbon dioxide when the total pressure is 871 mmHG ?
a. 871 mmHG
b. 135 mmHG
c. 329 mmHG
d. 406 mmHG
e. 763 mmHG
15) Given the following thermochemical data at $25^{\circ} \mathrm{C}$ and 1 atm pressure,
$3 / 2 \mathrm{O} 2(\mathrm{~g})+2 \mathrm{~B}(\mathrm{~s}) \rightarrow \mathrm{B} 2 \mathrm{O} 3(\mathrm{~s}) ; \Delta \mathrm{H}^{\circ}=-1264 \mathrm{KJ}$

O3(g)+2B(s) \rightarrow B2O3(s); $\Delta \mathrm{H}^{\circ}=-1406 \mathrm{KJ}$
Determine H° for the following reaction at $25^{\circ} \mathrm{C}$ and 1 atm pressure. 3O2 (g) $\rightarrow 2 \mathrm{O} 3(\mathrm{~g})$
a. $+980 \mathrm{KJ} / \mathrm{mol}$
b. $+284 \mathrm{KJ} / \mathrm{mol}$
c. $-284 \mathrm{KJ} / \mathrm{mol}$
d. $-980 \mathrm{KJ} / \mathrm{mol}$
e. $-2670 \mathrm{KJ} / \mathrm{mol}$
16) At $25^{\circ} \mathrm{C}$, the standard enthalpy of combustion of gaseous propane (C3H8) is -2219.0KJ per mole of propane, and the standard enthalpy of combustion of gaseous propylene (C3H6) is -2058.3KJ per mole of propylene. What is the standard enthalpy change for the following reaction at $25^{\circ} \mathrm{C}$? $\mathrm{C} 3 \mathrm{H} 6(\mathrm{~g})+\mathrm{H} 2(\mathrm{~g}) \rightarrow \mathrm{C} 3 \mathrm{H} 8(\mathrm{~g})$;

Substance
CO2(g)
H2O(I)
$\Delta \mathrm{H}^{\circ} \mathrm{f}(\mathrm{KJ} / \mathrm{mol})$
-393.5
-285.8
a. $\quad-20.4 \mathrm{KJ}$
b. -150.7 KJ
c. +104.7 KJ
d. +160.7 KJ
e. e. -125.1 KJ
17. How much heat is liberated at constant pressure 0.833 g of calcium carbonate reacts with 59.7 mL of 0.251 M hydrochloric acid?
$\mathrm{CaCO} 3(\mathrm{~s})+2 \mathrm{HCl}(\mathrm{aq}) \rightarrow \mathrm{CaCL} 2(\mathrm{aq})+\mathrm{H} 2 \mathrm{O}(\mathrm{I})+\mathrm{CO} 2(\mathrm{~g}) ; \Delta \mathrm{H}^{\circ}=-$ 15.2KJ
a.0.113KJ
b. 0.526 KJ
c.3.81KJ
d.12.6KJ
e.0.24 KJ
18. which of the following is/are true of Avogadro's law?

1. Avogadro's law relates the volume of a gas to the moles of the gas at constant temperature and pressure
2. Avogadro's law states that the pressure of a gas decreases if the volume is increased at constant temperature and molar concentration
3. Avogadro's law states that the pressure of a gas increases with the increase in its temperature at constant volume and molar concentration
a. 1 and3
b. 3 only
c. 2 only
d. 1 only
e. 2 and 3
4. How many values are there for the magnetic quantum number when the value of the angular momentum quantum number is 3 ?
a. 7
b. 14
c. 15
d. 1
e. 12
5. Which of the following statements is true concerning the decomposition of liquid water to form hydrogen gas and oxygen gas?
$2 \mathrm{H} 2 \mathrm{O}(\mathrm{I}) \rightarrow 2 \mathrm{H} 2(\mathrm{~g})+\mathrm{O} 2(\mathrm{~g})$
a. $\Delta \mathrm{H}$ is greater than $\Delta \mathrm{U}$ because of the pressurevolume work done by the gaseous products
b. $\Delta \mathrm{H}$ is less than $\Delta \mathrm{U}$ because the atmosphere does pressure-volume work on the gaseous products
c. $\Delta \mathrm{H}$ is less than $\Delta \mathrm{U}$ because of the pressure-value work done by the gaseous products
d. $\Delta \mathrm{H}$ is greater than $\Delta \mathrm{U}$ because the pressure is constant
e. $\Delta \mathrm{H}$ equals $\Delta \mathrm{U}$ because both are state functions
6. Absolute zero is the point at which?
a. a straight-line graph of V versus $T(K)$ intersects the origin
b. a straight-line graph of V versus $1 / \mathrm{P}$ at constant T intersects the origin
c. gaseous helium liguefies
d. a straight-line graph of V versus $\mathrm{T}\left({ }^{\infty} \mathrm{C}\right)$ intersects the origin
e. a straight-line graph of $1 / \mathrm{V}$ versus P at constant T intersects the origin
22) calcium nitrate react with ammonium chloride at slightly elevated temperatures, as represented in the equation below.
$\mathrm{Ca}(\mathrm{NO} 2) 2(\mathrm{~s})+2 \mathrm{NH} 4 \mathrm{Cl}(\mathrm{s}) \rightarrow 2 \mathrm{~N} 2 \mathrm{O}(\mathrm{g})+\mathrm{CaCl} 2(\mathrm{~s})+4 \mathrm{H} 2 \mathrm{O}(\mathrm{g}) ;$ What is the maximum volume of N2O at STP that could be produced using a $5.20-\mathrm{mol}$ sample of each reactant?
a. 233 L
b. $1.42 \times 10^{\wedge} 3 \mathrm{~L}$
c. 22.4 L
d. 116 L
e. $8.58 \times 10^{\wedge}-3 \mathrm{~L}$
23. The reaction of iron hydrochloric acid is represented by the following thermochemical equation.
$\mathrm{Fe}(\mathrm{s})+2 \mathrm{HCl}(\mathrm{aq}) \rightarrow \mathrm{FeCl} 2(\mathrm{aq})+\mathrm{H} 2(\mathrm{~g}) ; \Delta \mathrm{H}^{\infty}=-87.9 \mathrm{KJ} ; \mathrm{How}$ much heat is liberated at constant pressure if 0.154 g of iron reacts with 25.7 mL of 0.358 M HCl ?
a. 0.404 KJ
b. 13.5 KJ
c. 1.85 KJ
d. 87.9 KJ
e. 0.242 KJ
24. A $500-\mathrm{cm}^{\wedge} 3$ sample of $1.0 \mathrm{M} \mathrm{NaOH}(\mathrm{aq})$ is added to 500 cm 3 of $1.0 \mathrm{M} \mathrm{HCl}(\mathrm{aq})$ in a Styrofoam cup, and the solution is quickly stirred. The rise in temperature ($\Delta \mathrm{T} 1$) is measured. The experiment is repeated using $100 \mathrm{~cm}^{\wedge} 3$ of each solution, and the rise in temperature ($\Delta T 2$) is measured. What conclusion can you draw about $\Delta \mathrm{T} 1$ and $\Delta \mathrm{T} 2$? $\mathrm{HCl}(\mathrm{aq})+\mathrm{NaOH}(\mathrm{aq}) \mathrm{H} 2 \mathrm{O}(\mathrm{I})+\mathrm{NaCL}(\mathrm{aq}) ; \Delta \mathrm{H}^{\infty}=-55.8 \mathrm{KJ}$
a. $\Delta \mathrm{T} 1$ is five times as large as $\Delta \mathrm{T} 2$
b. $\Delta \mathrm{T} 1$ is less than $\Delta \mathrm{T} 2$
c. $\Delta \mathrm{T} 2$ is greater than $\Delta \mathrm{T} 1$
d. $\Delta \mathrm{T} 2$ is equal to $\Delta \mathrm{T} 1$
e. $\Delta \mathrm{T} 2$ is five times as large as $\Delta \mathrm{T} 1$
25. In a mixture of helium and chlorine, occupying a volume of 12.8 L at 605.6 mmHg and $21.6{ }^{\circ} \mathrm{C}$, it is found that the partial pressure of chlorine is 143 mmHg . What is the total mass of the sample?
a. 31.6 g
b. 7.09 g
c. 1.28 g
d. 0.4 g
e. 8.37 g
26. What is the standard enthalpy change for the combustion of liquid cyclopentane, C 5 H 10 ?
$2 \mathrm{C} 5 \mathrm{H} 10(\mathrm{l})+15 \mathrm{O} 2(\mathrm{~g}) \rightarrow 10 \mathrm{CO} 2(\mathrm{~g})+10 \mathrm{H} 2 \mathrm{O}(\mathrm{l})$
$\mathrm{C} 5 \mathrm{H} 10(\mathrm{I}) \Delta \mathrm{H} \propto \mathrm{f}(\mathrm{KJ} / \mathrm{mol})-105.6$
CO2 (g) $\Delta \mathrm{H} \propto \mathrm{f}(\mathrm{KJ} / \mathrm{mol})-393.5$
$\mathrm{H} 2 \mathrm{O}(\mathrm{I}) \Delta \mathrm{H}^{\infty}(\mathrm{KJ} / \mathrm{mol})-285.8$
a. +784.9 KJ
b. +573.7 KJ
c.-784.9KJ
d.-6581.8KJ
e.-573.7KJ
27. What does the standard enthalpy change for the following reaction?
$\mathrm{N} 2 \mathrm{H} 4(\mathrm{l})+2 \mathrm{NO} 2(\mathrm{~g}) \rightarrow 2 \mathrm{~N} 2 \mathrm{O}(\mathrm{g})+2 \mathrm{H} 2 \mathrm{O}(\mathrm{I})$
$\mathrm{N} 2 \mathrm{H} 4(\mathrm{I}) \Delta \mathrm{H} \propto \mathrm{f}(\mathrm{KJ} / \mathrm{mol})+50.6$
$\mathrm{N} 2 \mathrm{O}(\mathrm{g}) \Delta \mathrm{H} \propto \mathrm{f}(\mathrm{KJ} / \mathrm{mol})+33.1$
$\mathrm{N} 2 \mathrm{O}(\mathrm{g}) \Delta \mathrm{H} \propto \mathrm{f}(\mathrm{KJ} / \mathrm{mol})+82.1$
$\mathrm{H} 2 \mathrm{O}(\mathrm{I}) \Delta \mathrm{H} \propto \mathrm{f}(\mathrm{KJ} / \mathrm{mol})-285.8$
a. -119.7KJ
b. +290.6 KJ
c. -524.2 KJ
d. -290.6 KJ
e. +119.7KJ

ANSWER: D

28. when 9.42 g of methane $(\mathrm{CH} 4)$ is burned in a bomb calorimeter (heat capacity=2.677x10^3 $\mathrm{J} / \infty \mathrm{C}$), the temperature rises from 24.00 to 27.08∞ C, How much heat is absorbed by the calorimeter?
$\mathrm{CH} 4(\mathrm{~g})+\mathrm{CO} 2(\mathrm{~g}) \rightarrow \mathrm{CO} 2(\mathrm{~g})+2 \mathrm{H} 2 \mathrm{O}(\mathrm{l}) \quad \Delta \mathrm{H} \infty=-1283.8$
a. 753 KJ
b. 8.24 KJ
c. $1.28 \times 10^{\wedge} 3 \mathrm{KJ}$
d. $4.84 \mathrm{X} 10^{\wedge} 3 \mathrm{KJ}$
e. 745 KJ
29. What volume of ammonia gas, measured at 547.9 mmHg and $27.6^{\circ} \mathrm{C}$, is required to produce 8.98 g of ammonium sulfate according to the following balanced chemical equation?
$2 \mathrm{NH} 3(\mathrm{~g})+\mathrm{H} 2 \mathrm{SO} 4(\mathrm{aq}) \rightarrow(\mathrm{NH} 4) 2 \mathrm{SO} 4(\mathrm{~s})$
a. 0.000992 L
b. 1.16 L
c. 4.65 L
d. 0.00397 L
e. 18L

ANSWER: C
30. At 530.4 mmHg and $55.3 \infty \mathrm{C}$, a 3.14 -L sample of a hydrocarbon gas has a mass of 2.28 g . What is the formula of the gas?
a. C 2 H 6
b. $\mathrm{C} 2 \mathrm{H}_{2}$
c. C 2 H 4
d.C3H6
e.C3H8

ANSWER: C
31. When 13.8 mL of 0.870 M lead (2) nitrate reacts with 90.0 mL of 0.777 M sodium chloride, 0.279 KJ of heat is released at constant pressure. What is $\Delta \mathrm{H} \infty$ for this reaction?
$\mathrm{Pb}(\mathrm{NO} 3) 2(\mathrm{aq})+2 \mathrm{NaCl}(\mathrm{aq}) \rightarrow \mathrm{PbCl} 2(\mathrm{~s})+2 \mathrm{NaNO} 3(\mathrm{aq})$
a. 23.3 KJ
b. 4 KJ
c. 1.84 KJ
d. 8 KJ
e. 3.41 KJ

ANSWER: C

32. If 250 Ml of methane, CH 4 , effuses through a small hole in 20 s , the time required for the same volume of helium to pass through the hole under the same conditions will be
a. 10 s
b. 1.3 s
c. 40 s
d. 5 s
e. 80 s
33. Under conditions of constant pressure, for which of the following reactions is the magnitude of a pressure-volume work going to be the greatest?

> a. $2 \mathrm{H} 2 \mathrm{O} 2(\mathrm{l}) \rightarrow 2 \mathrm{H} 2 \mathrm{O}(\mathrm{l})+\mathrm{O} 2(\mathrm{~g})$
> b. $\mathrm{BaO}(\mathrm{S})+\mathrm{SO} 3(\mathrm{~g}) \rightarrow \mathrm{BaSO} 4(\mathrm{~s})$
> c. $2 \mathrm{NO}(\mathrm{g})+\mathrm{O} 2(\mathrm{~g}) \rightarrow 2 \mathrm{NO} 2(\mathrm{~g})$
> d. $2 \mathrm{KClO} 3(\mathrm{~s}) \rightarrow 2 \mathrm{KCl}(\mathrm{s})+3 \mathrm{O} 2(\mathrm{~g})$
> e. $\mathrm{H} 2(\mathrm{~g})+\mathrm{Cl} 2(\mathrm{~g}) \rightarrow 2 \mathrm{HCl}(\mathrm{g})$

ANSWER: D
34. Which f the following processes will result in the lowest final temperature of the metal-water mixture at equilibrium? The specific heat of cobalt is $0.421 \mathrm{~J} / \mathrm{g}(\mathrm{g} . \infty \mathrm{C})$
a. the addition of 100 g of cobalt at $95^{\circ} \mathrm{C}$ to 40 mL of water at $25^{\circ} \mathrm{C}$ in an insulated container
b. the addition of 100 g of cobalt at $95 \infty \mathrm{C}$ to 80 mL of water at $25^{\circ} \mathrm{C}$ in an insulated container
c. the addition of 100 g of cobalt at $95{ }^{\circ} \mathrm{C}$ to 100 mL of water at $25^{\circ} \mathrm{C}$ in an insulated container
d. the addition of 100 g of cobalt at $95{ }^{\circ} \mathrm{C}$ to 60 mL of water at $25 \infty \mathrm{C}$ in an insulated container
e. the addition of 100 g of cobalt at $95{ }^{\circ} \mathrm{C}$ to 20 mL of water at $25^{\circ} \mathrm{C}$ in an insulated container
35. When 22.0 mL of liquid benzene (C6H6, $\mathrm{d}=0.879$ g / mL) reacts with 34.2 L of oxygen gas, measured at 1.00 atm pressure and $25 \mathrm{C}, 6.09 \times 10^{\wedge} 2 \mathrm{KJ}$ of heat is released at constant pressure.
What is H for the following reaction? ($\mathrm{R}=0.0821$
L.atm/(K.mol))
$2 \mathrm{C} 6 \mathrm{H} 6(\mathrm{I})+15 \mathrm{O} 2(\mathrm{~g}) \rightarrow 12 \mathrm{CO} 2(\mathrm{~g})+6 \mathrm{H} 2 \mathrm{O}(\mathrm{I})$
a. $-4.92 \times 10^{\wedge} 3 \mathrm{KJ}$
b. $-2.84 \times 10^{\wedge} 1 \mathrm{KJ}$
c. $-4.36 \times 10^{\wedge} 2 \mathrm{KJ}$
d. $-6.53 \times 10^{\wedge} 3 \mathrm{KJ}$
e. $-3.7 \times 10^{\wedge} 2 \mathrm{KJ}$
36. Using the following data, calculate the standard enthalpy of reaction for the coal gasification process
$2 \mathrm{C}(\mathrm{s})+2 \mathrm{H} 2 \mathrm{O}(\mathrm{g}) \rightarrow \mathrm{CH} 4(\mathrm{~g})+\mathrm{CO} 2(\mathrm{~g})$,
$\mathrm{C}(\mathrm{s})+\mathrm{H} 2 \mathrm{O}(\mathrm{g}) \rightarrow \mathrm{CO}(\mathrm{g})+\mathrm{H} 2(\mathrm{~g}) ; \Delta \mathrm{H}^{\infty}=+131.3 \mathrm{KJ} ;$
$\mathrm{CO}(\mathrm{g})+\mathrm{H} 2 \mathrm{O}(\mathrm{g}) \rightarrow \mathrm{CO}(\mathrm{g})+\mathrm{H} 2(\mathrm{~g}) ; \Delta \mathrm{H}^{\infty}=-41.2 \mathrm{KJ} ;$
$\mathrm{CO}(\mathrm{g})+3 \mathrm{H} 2(\mathrm{~g}) \rightarrow \mathrm{CH} 4(\mathrm{~g})+\mathrm{H} 2 \mathrm{O}(\mathrm{g}) ; \Delta \mathrm{H}^{\infty}=-206.1 \mathrm{KJ} ;$
a. +15.3 KJ
b. -378.6 KJ
c. -157.26 KJ
d. +378.6 KJ
e. -116.0KJ
37. The reaction of iron hydrochloric acid is represented by the following thermochemical equation.
$\mathrm{Fe}(\mathrm{s})+2 \mathrm{HCl}(\mathrm{aq}) \rightarrow \mathrm{FeCl} 2(\mathrm{aq})+\mathrm{H} 2(\mathrm{~g}) ; \Delta \mathrm{H}_{\infty}=-87.9 \mathrm{KJ} ; \mathrm{In}$ which of the following experiments would the temperature rise the most?
a. $\quad 1.1 \mathrm{~g}$ of Fe added to 1.0 L of 0.02 M HCl
b. 1.1 g of Fe added to 1.0 L of 0.02 M HCl
c. $\quad 0.56 \mathrm{~g}$ of Fe added to 1.0 L of 0.02 M HCl
d. 2.2 g of Fe added to 1.0 L of 0.03 M HCl
e. 4.5 g of Fe added to 1.0 L of 0.03 M HCl
38. What is the number of subshells found in the $n=6$ shell?
a. 7
b. 36
c. 5
d. 6
e. 8

ANSWER: D
39. A 8.22-g sample of solid calcium reacted in excess fluorine gas to give a $16-\mathrm{g}$ sample of pure solid CaF 2 . The heat given off in this reaction was 251 KJ at constant pressure. Given this information, what is the enthalpy of formation of $\mathrm{CaF} 2(\mathrm{~s})$?
a. $251 \mathrm{KJ} / \mathrm{mol}$
b. $-1.23 \times 10^{\wedge} 3 \mathrm{KJ} / \mathrm{mol}$
c. $-613 \mathrm{KJ} / \mathrm{mol}$
d. $1.23 \times 10^{\wedge} 3 \mathrm{KJ} / \mathrm{mol}$
e $-251 \mathrm{KJ} / \mathrm{mol}$
40. When 0.0500 mol of $\mathrm{HCl}(\mathrm{aq})$ is reacted with 0.0500 mol of $\mathrm{NaOH}(\mathrm{aq})$ in 50.0 mL of water, the temperature of the solution increases by $5.99{ }^{\circ} \mathrm{C}$. What is the enthalpy for the following thermochemical equation?
$\mathrm{HCl}(\mathrm{aq})+\mathrm{NaOH}(\mathrm{aq}) \rightarrow \mathrm{NaCl}(\mathrm{aq})+\mathrm{H} 2 \mathrm{O}(\mathrm{I}) ;$ Assume that the heat capacity of the solution and calorimeter is $465.4 \mathrm{~J} / \infty \mathrm{C}$.
a. 2.79 KJ
b. -55.8 KJ
c. -0.139 KJ
d. 55.8 KJ
e. -2.79 KJ
41. The volume of a sample of gas measured at $35.0 \times \mathrm{C}$ and 1.00 atm pressure is 2.00 L . What must the final temperature be in order for the gas to have a final volume of 3.00 L at 1.00 atm pressure?
a. $52.5 \infty \mathrm{C}$
b. 189.0∞ C
c. $-220.5 \infty \mathrm{C}$
d. $23.3 \infty \mathrm{C}$
e. -67.8∞ C

ANSWER: B

42. The partial pressure of $\mathrm{CH} 4, \mathrm{n} 2$, in a sample of gas were found to be 183 mmHg .443 mmHg , and 693 mmHg , respectively. What is the mole fraction of nitrogen?
a. 0.525
b. 0.336
c. 0.410
d. 21.7
e.0.912

ANSWER: B

