

1-

2- All of the following are base units of the SI system except:
A) kilogram.
B) kelvin.
C) meter.
D) volt.

3- What is the conversion factor between $\mathrm{km} / \mathrm{h} 2$ and $\mathrm{m} / \mathrm{s} 2$?
A) 7.72 , $10-6 \mathrm{~m} / \mathrm{s} 2$
B) 2.78 , $10-1 \mathrm{~m} / \mathrm{s} 2$
C) $1.30,104 \mathrm{~m} / \mathrm{s} 2$
D) $3.60 \mathrm{~m} / \mathrm{s} 2$

5- The number of significant figures in 10001 is
A) two.
B) three.
C) five.
D) six.

6- The number of significant figures in 0.01500 is
A) two.
B) three.
C) four.
D) five.

8- Starting from city A, a car drives 250 miles east to city B, then $\mathbf{3 0 0}$ miles north to city C, and finally $\mathbf{7 0 0}$ miles west to city D . What is the distance between city A and city D?
A) 300 mi
B) 400 mi
C) 500 mi
D) 600 mi

5	6	7	8
C	C	A	C

9- A person stands 35.0 m from a flag pole. With a protractor at eye level, he finds that the angle at the top of the flag pole makes with the horizontal is $\mathbf{2 5 . 0}$ degrees. How high is the flag pole? (The distance from his feet to his eyes is 1.7 m .)
A) 10 m
B) 20 m
C) 30 m
D) 80 m

10-
11- Suppose that an object travels from one point in space to another. Make a comparison between the displacement and the distance traveled.
A) The displacement is either greater than or equal to the distance traveled.
B) The displacement is always equal to the distance traveled.
C) The displacement is either less than or equal to the distance traveled.
D) The displacement can be either greater than, smaller than, or equal to the distance traveled.

12- A new car manufacturer advertises that their car can go "from zero to sixty in 8 s ". This is a description of
A) average speed.
B) instantaneous speed.
C) average acceleration.
D) instantaneous acceleration.

9	10	11	12
B	C	C	C

14- Suppose that an object is moving with a constant velocity. Make a statement concerning its acceleration.
A) The acceleration must be constantly increasing.
B) The acceleration must be constantly decreasing.
C) The acceleration must be a constant non-zero value.
D) The acceleration must be equal to zero

15-Suppose that an object is moving with constant acceleration. Make a statement concerning its motion with respect to time.
A) In equal times its speed increases by equal amounts.
B) In equal times its velocity changes by equal amounts.
C) In equal times it moves equal distances.
D) A statement cannot be made using the information given.

16- Objects A and B both start from rest. They both accelerate at the same rate. However, object A accelerates for twice the time as object B. What is the distance traveled by object A compared to that of object B ?
A) the same distance
B) twice as far
C) three times as far
D) four times as far

13	14	15	16
A	D	B	D

17- When an object is released from rest and falls in the absence of friction, which of the following is true concerning its motion?
A) The speed of the falling object is proportional to its mass.
B) The speed of the falling object is proportional to its weight.
C) The speed of the falling object is inversely proportional to its surface area.
D) None of the above is true.

19- Suppose a ball is thrown straight up. Make a statement about the velocity and the acceleration when the ball reaches the highest point.
A) Both its velocity and its acceleration are zero.
B) Its velocity is zero and its acceleration is not zero.
C) Its velocity is not zero and its acceleration is zero.
D) Neither its velocity nor its acceleration is zero.

20-Suppose a ball is thrown straight up. What is its acceleration just before it reaches its highest point?
A) zero
B) slightly less than g
C) exactly g
D) slightly greater than g

17	18	19	20
D	A	B	C

21-

22- A car travels 40 kilometers at an average speed of $80 \mathrm{~km} / \mathrm{h}$ and then travels 40 kilometers at an average speed of $40 \mathrm{~km} / \mathrm{h}$. The average speed of the car for this $\mathbf{8 0} \mathbf{~ k m}$ trip is:
A) $40 \mathrm{~km} / \mathrm{h}$
B) $45 \mathrm{~km} / \mathrm{h}$
C) $53 \mathrm{~km} / \mathrm{h}$
D) $60 \mathrm{~km} / \mathrm{h}$
E) $80 \mathrm{~km} / \mathrm{h}$

23- Q2) A car starts from rest and goes down a slope with a constant acceleration of $5 \mathrm{~m} / \mathrm{s} 2$. After 5 seconds the car reaches the bottom of the hill. What is its speed at the bottom of the hill?
A) $1 \mathrm{~m} / \mathrm{s}$
B) $12.5 \mathrm{~m} / \mathrm{s}$
C) $25 \mathrm{~m} / \mathrm{s}$
D) $50 \mathrm{~m} / \mathrm{s}$
E) $160 \mathrm{~m} / \mathrm{s}$

24- A 5.0-kg block is on an incline that makes an angle 30回 with the horizontal. If the coefficient of static friction is 0.5 , the maximum force that can be applied parallel to the plane without moving the block is:
A) 0 N
B) 3.4 N
C) 21.1 N
D) 45.6 N
E) 55 N

21	22	23	24
B	C	C	D

25- A 5.0-kg block is resting on a horizontal plank. The coefficient of static friction is 0.50 and the coefficient of kinetic friction is 0.40 . After one end of the plank is raised so the plank makes an angle of 30 ? with the horizontal, the force of friction is:
A) 0 N
B) 17 N
C) 20 N
D) 25 N
E) 49 N

26- Q12) A 5.0-kg block is on an incline that makes an angle of 30 ? with the horizontal. If the coefficient of static friction is $\mathbf{0 . 5 0}$, the minimum force that can be applied parallel to the plane to hold the block at rest is:
A) 0 N
B) 3.4 N
C) 21.1 N
D) 24.5 N
E) 46 N

28- A 5.0-kg block is on an incline that makes an angle 30圆 with the horizontal. If the coefficient of static friction is 0.5 , the maximum force that can be applied parallel to the plane without moving the block is:
A) 0 N
B) 3.4 N
C) 21.1 N
D) 45.6 N
E) 55 N

25	26	27	28
B	B	C	D

30- A 1000-kg airplane moves in straight flight at constant speed. The force of air friction is 1800 N . The net force on the plane is:
A) 0 N
B) 11600 N
C) 1800 N
D) 9800 N
E) none of these

31- A rock is dropped from the top of a vertical cliff and takes 3.00 s to reach the ground below the cliff. A second rock is thrown vertically from the cliff, and it takes this rock 2.00 s to reach the ground below the cliff from the time it is released. With what velocity was the second rock thrown, assuming no air resistance?
A) $4.76 \mathrm{~m} / \mathrm{s}$ upward
B) $5.51 \mathrm{~m} / \mathrm{s}$ downward
C) $12.3 \mathrm{~m} / \mathrm{s}$ upward
D) $4.76 \mathrm{~m} / \mathrm{s}$ downward
E) $12.3 \mathrm{~m} / \mathrm{s}$ downward

29	30	31	32
B	A	E	D

A) 7.5
B) 9.8
C) 0
D) 12.5
E) 5.9

Q2) A stone is projected vertically upwards from the surface of the ground with an initial speed of $15 \mathrm{~m} / \mathrm{s}$. Its average speed (in m / s) over the time interval from its projection to the moment just before hitting the ground is:

34-
Q4) A helicopter is ascending vertically upwards at a constant speed of $12 \mathrm{~m} / \mathrm{s}$. When it is at a height of 60 m above the ground it releases a box. The speed (in m / s) of the box iust hafnro it hits the ground is:
A) 12
B) 34.3
C) 16.7
D) 9.8
E) 36.3

35-

33	34	35	36
A	C	E	B

Q3) A car is moving along the positive x-axis at a constant speed of $15 \mathrm{~m} / \mathrm{s}$. The driver notices a red traffic light 30 m ahead of him. Thus the driver immediately applies the breaks, and the car decelerates uniformly at $3 \mathrm{~m} / \mathrm{s}^{2}$. Which of the following statements is correct?
A) The car will stop at a position 7.5 m before reaching the traffic light.
B) The car will stop at a position 7.5 m after the traffic light.
C) The car will stop at a position 2.5 m before reaching the traffic light.
D) The car will stop at a position 2.5 m after the traffic light.
E) The car will stop exactly at the position of the traffic light

38-
Q5) In each figure, the set of forces act on an object. Which set does NOT change the state of motion of the object?

B)

C)

39-
In the figure, $\mathrm{M}_{1}=5 \mathrm{~kg}, \mathrm{M}_{2}=8 \mathrm{~kg}$ and $\theta=30^{\circ}$.
All the surfaces are frictionless. The acceleration
(in $\mathrm{m} / \mathrm{s}^{2}$) of mass M_{2} is:

An object moving along the x-axis has an initial velocity $v=1 \mathrm{~m} / \mathrm{s}$ at $\mathrm{t}=0$. Its velocity two seconds later is $-7 \mathrm{~m} / \mathrm{s}$. What is the average acceleration in $\left(\mathrm{m} / \mathrm{s}^{2}\right)$ of the particle between $\mathrm{t}=0$ and $\mathrm{t}=2$?
A) 2
B) 4
C) 0
D) -2
E) -4

A stone is projected vertically upward from the surface of the ground with an initial speed of $25 \mathrm{~m} / \mathrm{s}$. Its average speed (in m / s) over the time interval from its projection to the moment just before hitting the ground is:
A) 7.5
B) 9.8
C) 0
D) 12.5
E) 5.9

Which of the following statements is WRONG?
A) While mass is a scalar quantity, weight is a vector quantity.
B) The action force and the reaction force can never act on the same object.
C) If an object is moving at constant velocity, then the resultant force acting on it is zero.
D) An object can move at constant velocity if only one force acts on it.
E) The acceleration is always along the direction of the resultant force.

43-
You run a race with a friend. At first your kinetic energy is the same as his kinetic energy, but he is running faster than you are. When you increase your speed by 20 percent, you are running at the same speed he is. If your mass is 105 kg what is his mass (in kg)?
A) 88
B) 73
C) 115
D) 96
E) 81

44-

41	42	43	44
E	D	D	B

In the figure the force $\mathrm{F}=20 \mathrm{~N}, \mathrm{M}=4 \mathrm{~kg}, \theta=30^{\circ}$ and the coefficient of kinetic friction between the ground and the block is $\mu_{\mathrm{k}}=0.2$, The acceleration of the block is:

A) 4.98
B) 6.81
C) 1.87
D) 9.81
E) 5.73

45	46	47
C	D	A

48- An object is thrown vertically upwards with an initial speed of $30 \mathrm{~m} / \mathrm{s}$. After 4 s , the object is:
A) moving down at $20 \mathrm{~m} / \mathrm{s}$
B) moving up at $20 \mathrm{~m} / \mathrm{s}$
C) at its maximum height
D) moving down at $9.2 \mathrm{~m} / \mathrm{s}$

49- Which of the following statements is CORRECT?
A) anobjectcanaccelerateevenwhentheFR actingonitiszero.
B) when you walk forward without skidding, the static friction is the force that caused you to move.
C) weight is a scalar quantity.
D) the normal force is the reaction force to the weight of an object.
E) acceleration is always in opposite direction to the resultant force

50- AforceacceleratesabodyofmassM.Thesameforceappliedtoa second body produces three times the acceleration. The mass of the second body will be:
A) 2 M
B) $M / 3$
C) $M / 2$
D) 9 M
E) 3 M

51- Whatforce(inN)isneededtostopa1000-kgcarmovingat25m/s during a time interval of 10 seconds?
A) 400
B) 500
C) 250
D) 2000
E) 2500

52- A PHY-105 student on the moon releases an apple from a height of 1.25 m above the surface on the Moon. The speed of the apple just before it hits the moon's surface is: (Recall that the acceleration of gravity on the moon is one-sixth that on the earth)
A) Zero
B) 24.50
C) 4.95
D) 2.02
E) 4.08

48	49	50	51	52
D	B	B	E	E

Q7) In the figure the force $\mathrm{F}=40 \mathrm{~N}, \mathrm{M}=4 \mathrm{~kg}, \theta=30^{\circ}$ and the coefficient of kinetic friction between the ground and block is $\mu_{k}=0.2$. The Acceleration (in $\mathrm{m} / \mathrm{s}^{2}$) of the block is:
A) 0.4
B) 35
C) 8.2
D) 9.8
E) 5.7

53-

Q8) In the figure $\mathrm{M} 1=3 \mathrm{~kg}, \mathrm{M} 2=5 \mathrm{~kg}$ and $\theta=30^{\circ}$. All the surfaces are frictionless. The acceleration (in $\mathrm{m} / \mathrm{s}^{2}$) of mass M2 is:
A) 0.6 up the incline
B) 0.6 down the incline
C) 2.5 up the incline
D) 2.5 down the incline
E) 0

54-

Q9) In the figure, all surfaces are rough. M1 $=3 \mathrm{~kg}$ and $\mathrm{M} 2=1 \mathrm{~kg}$ and the coefficients of friction $\mu_{s}=0.5$ and $\mu_{k}=0.2$ for all surfaces. Find the maximum value of mass m (in kg) such that mass M2 will move with mass M1 without sliding. Ignore masses of all strings and the mass of the pulley
A) 2.8
B) 3.7
C) 4.0
D) 5.6
E) 4.9

55-

Q11) A 4.0-kg object starts moving from the origin with a speed of $2 \mathrm{~m} / \mathrm{s}$ under the effect of a variable force F_{x} that acts along the x-axis as shown in the figure. The speed (in m / s) of the object at $x=10 \mathrm{~m}$ is:
A) 9.8
B) 6.9
C) 7.2
D) 10.0
E) 1.1

56-

53	54	55	56
E	A	D	C

22. Two masses $\mathrm{m} 1=2.0 \mathrm{~kg}$ and $\mathrm{m} 2=4.0 \mathrm{~kg}$ are connected by a light inextensible string as shown in the figure. The system is pulled along a frictionless surface by a force $\mathrm{F}=18 \mathrm{~N}$. The value of the tension T (in N):
$\begin{array}{llll}\text { A) } 24.0 & \text { B) } 3.0 & \text { C) } 6.0 & \text { D) } 12.0\end{array}$

57-
21. Ablock of mass $m=4.0 \mathrm{kgslides}$ downa 35 degrees incline whena force of $F=10 \mathrm{~N}$ is applied upward paralleltothe incline. Ifthe coefficientofkineticfriction betweenthe blockandtheinclineis 0.2 , find the acceleration (in $\mathrm{m} / \mathrm{s}^{2}$) of the block as it moves down the inclined plane:
AD 3.1
[53) 4 (I)
(C) (1). 44
DD) 2.7
($\left.{ }^{4}\right) 102$

58-
23. In the figure mass $\mathrm{M}=4.0 \mathrm{~kg}$ and mass $\mathrm{m}=2.0 \mathrm{~kg}$. The ground surface isfrictionless, whilethecoefficient ofstaticfriction betweenthetwo masses is 0.30 . Findthemaximum valueof F (in N) such that mass m moves with mass M without sliding.

59-

57	58	59
E	C	C

60-how Are you © © ?

KEEP FIGHTING, YOU CAN DO IT

الله يوفقكم و يحقق كل امـانيكم و احلامكم

