

Chapter 4

Aromatic Compounds

Bitter almonds are source of benzaldehyde

benzaldehyde

4.1 Some Facts About Benzene :

Benzene (C₆H₆) is the parent hydrocarbon of the especially stable aromatic compounds.

C₆H₆ : highly unsaturated.

But

It does not behave as unsaturated
 It reacts by substitution not by addition
 It does not decolorize Br₂.
 It is not oxidized by KMnO₄.

Reactions with Halogens (Br2 and Cl2):
1- require Lewis acid catalyst
2- occur by substitution, not by addition

$$\begin{array}{c} C_{6}H_{6} + Br_{2} \xrightarrow{FeBr_{3}} & C_{6}H_{5}Br + HBr \\ \hline benzene & bromobenzene \end{array}$$

$$\begin{array}{c} C_{6}H_{6} + Cl_{2} \xrightarrow{FeCl_{3}} & C_{6}H_{5}Cl + HCl \\ \hline benzene & chlorobenzene \end{array}$$

4.2 The Kekulé Structure for Benzene

In 1865, Kekulé proposed a reasonable structure for benzene

These structures *differ only* in the arrangement of π -electrons. So they are two **Resonance structures**

4.3 The Resonance Structure of Benzene

Support for resonance structure:

1- Benzene has planar geometry allowing *p-p* orbital overlap
2- All C-C bond lengths are equal (1.39 Å) intermediate between C-C (1.54 Å) and C=C (1.34 Å)

4.4 The Orbital Model for Benzene :

p-orbitals on all carbon atoms overlap to form π -bonds creating a cloud of electrons above and below the plane of the ring.

4.5 Symbols for Benzene:

Kekulé

delocalized pi cloud

4.6 Nomenclature of Aromatic Compounds :

Some common names of *mono*-substituted benzene:

IUPAC names :

1- mono-substituted benzene : No numbers

2- di-substituted benzene : use numbers or prefixes: (ortho-, meta-, para-). [o-, m-, p-]

o-bromochlorobenzene (note alphabetical order)

m-nitrotoluene

Cl-CH=CH₂

m-chlorophenol

o-ethylaniline

More than two substituents : only numbers used.

3,5-dichlorotoluene

Arenes : aromatic hydrocarbons as a class

Aryl group (Ar) : any aromatic substituent

phenyl group

 $C_6H_5CH_2$ or $\langle\!\!\langle$ CH₂benzyl group

2-phenylpentane

Ph Ph Ph

1,3,5-triphenylbenzene

phenylcyclopropane (or 2-pentylbenzene) (or cyclopropylbenzene)

m-nitrobenzyl alcohol

PROBLEM 4.9 Draw the structure of

a. dibenzylc. benzyl iodide

b. cyclobutylbenzened. *p*-phenylstyrene

Answer :

PROBLEM 4.10 Name the following structures:

Answer : a. phenylcyclohexane or cyclohexylbenzene b. o-benzylphenol

4.7 Resonance Energy of Benzene :

 ΔH (Hydrogenation) of π -bond in alkene \approx (- 28) kcal/mol

$$\sum_{C=C} + H - H \longrightarrow - C - C - C - H + heat (26-30 \text{ kcal/mol}) \quad (\text{exothermic})$$

For 1,3-cyclohexadiene (2 C=C) : ΔH = 2 X 28.6 = 57.2 kcal/mol.

> Expected for 1,3,5-cyclohexatriene : ΔH = 3 X 28.6 ≈ 86 kcal/mol.

(Note: 1,3,5-cyclohexatriene with localized π -bonds does not exist)

> ΔH (Hydrogenation) of benzene = 50 kcal/mol

(36 kCal less than expected)

> Explanation:

Benzene is stabilised by 36 kcal/mol because of resonance. (Resonance Energy (stabilization by resonance) in benzene = 36 kcal/mol)

Conclusions :

- 1- Actual benzene molecule (with delocalized C=C bonds) more stable than contributing resonance structures (with localized C=C bonds) by 36 kcal/mol (86 - 50 = 36).
- 2- Resonance energy is the difference between energy of real molecule and calculated energy of the most stable resonance structure.
- 3- Benzene and all aromatic compounds react in a way to preserve aromaticity and retain stabilization.

4.8 Electrophilic Aromatic Substitution :

Benzene reacts in a way to preserve aromaticity and retain its resonance energy (stabilization)

Reactions : Benzene is electron-rich, it reacts with Electophiles to give aromatic products by substitution of H (**Electrophilic Aromatic Substitution**)

4.9 Mechanisms of Electrophilic Aromatic Substitution :

Halogenation:

1- FeCl3 catalyst (Lewis acid) generates the electrophile : $CI^{+\delta}$

2- Benzene donates electrons to the electrophile forming a carbocation intermediate, thus losing aromaticity.

$$\begin{array}{c} & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & &$$

3- The nonaromatic intermediate regains aromaticity by loss of proton

General Reaction Mechanism :

Reaction energy diagram

Reaction coordinate

Nitration :

1- Generation of nitronium ion (electrophile) from HNO3

2- Addition of electrophile followed by elimination of proton

benzene

Sulfonation:

Friedel-Crafts alkylation and acylation :

$\begin{array}{c} O \\ \parallel \\ CH_3CCl + AlCl_3 \rightleftharpoons CH_3C = O + AlCl_4^- \\ acetyl choride & acetyl cation \\ (acylium ion) \\ (Electrophile) \end{array}$

4.10 Ring-Activating and Ring-Deactivating Groups :

1- e-donating (releasing) substituents increase electron density on the ring and speed up the reaction (Activating)

2- e-withdrawing substituents decrease electron density on the ring and slow down the reaction (Deactivating)

4.11 ortho, para- and meta-directing groups :

Groups present on the ring determine the position of new substituent

We need e-releasing groups at these positions But e-withdrawing groups better at m-position

Table 4.1Directing and Activating Effects of Common FunctionalGroups (Groups are Listed in Decreasing Order of Activation)

	Substituent group	Name of group	
60	$-\overset{\cdots}{NH}_{2}$, $-\overset{\cdots}{NH}_{R}$, $-\overset{\cdots}{NR}_{2}$	amino	
irectin	$-OH, -OCH_3, -OR$	hydroxy, alkoxy	Activ
ho,Para-D		acylamino	ating
on	-CH ₃ , -CH ₂ CH ₃ , -R	alkyl	
	- F;, - Cl;, - Br;, -1:	halo	
	:о: :о: Ш —сRсо́н	acyl, carboxy	
0.2500	:0: :0: 	carboxamido, carboalkoxy	
Meta-Directing	: о: —s—öн : о:	sulfonic acid	eactivating
	-c≡N:	cyano	
	-Ň.Ö	nitro	

1- ortho, para-directing groups :

O-,p- preferred

Meta attack

m- Not preferred.

groups with unshared electrons are strong activating and o-, p-directing: OH OCH3 OCOCH3 NH2 NHCH3 N(CH3)3 NHCOCH3

2-meta-Directing Groups:

o,p-substitution Not preferred

One resonance structure has two adjacent +ve charges (highly unstable)

Meta attack

Groups in which the atom directly attached to the ring is positively charged or part of a multiple bond to electronegative element are *meta*-directing.

Y is an electron-withdrawing atom such as oxygen or nitrogen; atom X carries a positive charge in one of the resonance contributors.

Substituent Effect on Reactivity :

1) ortho,para-directing groups donate electrons to the ring. They are activating.

 meta-directing groups are e-withdrawing (have +ve or partial +ve charge) They are deactivating.

 Exception : Halogens (F, Cl, Br, and I) have two opposing effects: They are electron withdrawing and deactivating But they have unshared es, so they are ortho,para-directing.

4.12 Importance of Directing Effects in Synthesis :

a- How to prepare p-Bromonitrobenzene ?

b- How to prepare m-Bromonitrobenzene?

PROBLEM 4.16

Devise a synthesis for the following, starting with benzene: **a-** *m*-bromobenzenesulfonic acid **b-** *p*-nitrotoluene

Questions

Chapt 3: 33 34 37 38 41 42 53 55 59 Chapt 4: 21-24 30-32 37-40 43