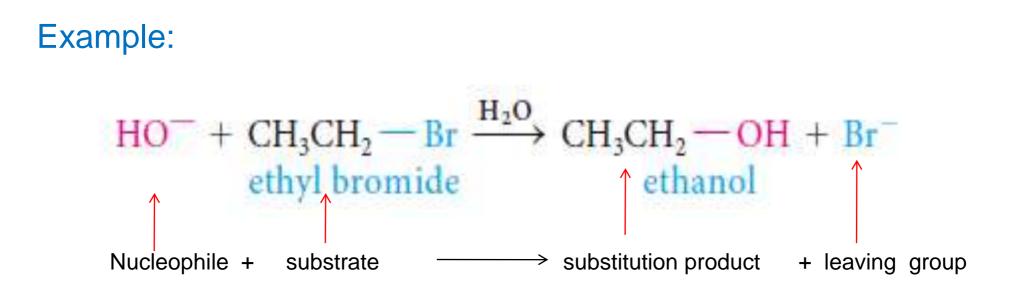


Chapter 6

Organic Halogen Compounds

Substitution and Elimination Reactions


Organic Halogen Compounds: 1- Alkyl Halides : R-X primary R-CH2-X R secondary R-CH-X R R-C-X R tertiary R-CH=CH-X vinyl

2- Aryl Halides : Ar-X

6.1 Nucleophilic Substitution :

Alkyl halides undergo Nucleophilic Substitution reactions (SN1, SN2).-

The Nucleophile (Nu) displaces the halide ion (X⁻, Leaving Group) from the alkyl halide (R-X, Substrate)

Nucleophiles may be : 1) neutral (with lone pairs) or 2) negatively charged

1- Reaction with negatively charged nucleophiles:

 $\begin{array}{rcl} \text{Nu:}^- &+ & \text{R:L} &\longrightarrow & \text{R:Nu} &+ &:\text{L}^-\\ \text{nucleophile} & \text{substrate} & & \text{product} & & \text{leaving}\\ (\text{anion}) & & & & \text{group} \end{array}$

2- Reaction with neutral nucleophiles:

 $\begin{array}{rcl} Nu: & + & R:L & \longrightarrow & R:\overset{+}{Nu} & + & :L^{-} \\ nucleophile & substrate & product & leaving \\ (neutral) & & & group \end{array}$

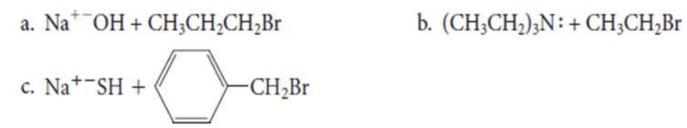
6.2 Examples of Nucleophilic Substitution :

Types of Nucleophiles: (according to nucleophilic atom) :

oxygen nucleophiles : HO, CH₃O, H₂O, CH₃OH

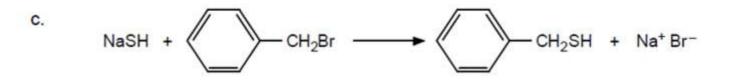
nitrogen nucleophiles : NH3, RNH2, R2NH, R3N

sulfur nucleophiles : HS, RS, H2S, RSH


halogen nucleophiles : Br⁻, I

carbon nucleophiles : CN⁻, R⁻

Table 6.1 — Reactions of Common Nucleophiles with Alkyl Halides (Eqs. 6.2 and 6.3)				
Nu			R—Nu	
Formula	Name	Formula	Name	Comments
Oxygen nucleop	philes			
1. но́:-	hydroxide	R-OH	alcohol	
2. RO:-	alkoxide	R-ÖR	ether	
3. нён	water	R-O H	alkyloxonium ion	These ions lose a proton and the (alcohol) products are alcohols and $\xrightarrow{-H^+}$ \overrightarrow{ROH} $\xrightarrow{(alcohol)}$
4. ROH	alcohol	R-O H	dialkyloxonium ion	$ \begin{array}{c} $
5. R-C	carboxylate	0 R—OC—R ∵	ester	
Nitrogen nucle	ophiles			
6. NH ₃	ammonia	R—NH ₃	alkylammonium ion	With a base, $\xrightarrow{-H^+} RNH_2$ these ions $\xrightarrow{-H^+}$
7. RNH ₂	primary amine	R—NH₂R	dialkylammonium ion	readily lose — R ₂ NH
. R ₂ NH	secondary amine	R-NHR ₂	trialkylammonium ion	a proton to give $\xrightarrow{-H^+} R_3N$:
9. R ₃ N	tertiary amine	R-NR ₃	tetraalkylammonium ion	amines.


Sulfur nucleophiles				
10. н з : -	hydrosulfide	R—SH	thiol	
11. RS:-	mercaptide	R-SR	thioether (sulfide)	
12. R ₂ S:	thioether	$R-\dot{S}R_2$	trialkylsulfonium ion	
Halogen nucleophile	s			
13. :::-	iodide	R—I:	alkyl iodide	The usual solvent is acetone. Sodium iodide is soluble in acetone, but sodium bromide and sodium chloride are not.
Carbon nucleophiles				
14. ⁻ :C≡N:	cyanide	R—C≡N:	alkyl cyanide (nitrile)	Sometimes the isonitrile, $R - N \equiv \overline{C}$; is formed.
15. [–] ∶C≡CR	acetylide	R—C≡CR	alkyne	

PROBLEM 6.1 Using Table 6.1, write complete equations for the following nucleophilic substitution reactions:

6.1 a. NaOH + $CH_3CH_2CH_2Br \longrightarrow CH_3CH_2CH_2OH + Na^+Br^-$

b. $(CH_3CH_2)_3N + CH_3CH_2Br \longrightarrow (CH_3CH_2)_4N^+ Br^-$

PROBLEM 6.2 Write an equation for the preparation of each of the following compounds, using a nucleophilic substitution reaction. In each case, label the nucleophile, the substrate, and the leaving group.

a. $(CH_3CH_2)_3N$	b. CH ₃ CH ₂ CH ₂ OH
c. (CH ₃) ₂ CHCH ₂ C≡N	d. CH ₃ CH ₂ CH ₂ CH ₂ OCH ₃
e. (CH ₃ CH ₂) ₃ S ⁺ Br ⁻	f. CH ₂ =CHCH ₂ I

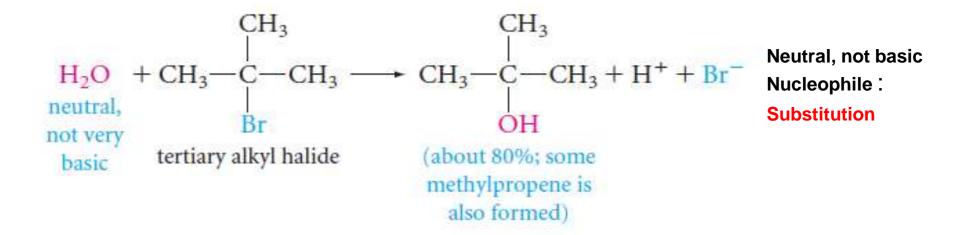
a) $(CH_3CH_2)_2NH + CH_3CH_2Br \longrightarrow (CH_3CH_2)_3NH + Br$ nucleophile substrate leaving group $(CH_3CH_2)_2NH + (CH_3CH_2)_3NH \iff (CH_3CH_2)_2NH_2 + (CH_3CH_2)_3N$

b) $HO^- + CH_3CH_2CH_2Br \longrightarrow CH_3CH_2CH_2CH_2OH + Br^-$

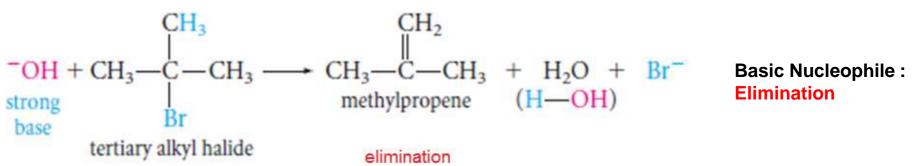
C) $\neg C \equiv N + (CH_3)_2 CHCH_2 Br \longrightarrow (CH_3)_2 CHCH_2 CN + Br^-$

d) $CH_3CH_2CH_2CH_2O^- + CH_3Br \longrightarrow CH_3CH_2CH_2CH_2OCH_3 + Br^$ nucleophile substrate leaving grc or $CH_3O^- + CH_3CH_2CH_2CH_2Br \longrightarrow CH_3OCH_2CH_2CH_2CH_3 + Br^-$

e) $(CH_3CH_2)_2S$: + $CH_3CH_2Br \longrightarrow (CH_3CH_2)_3S$: + Br^-

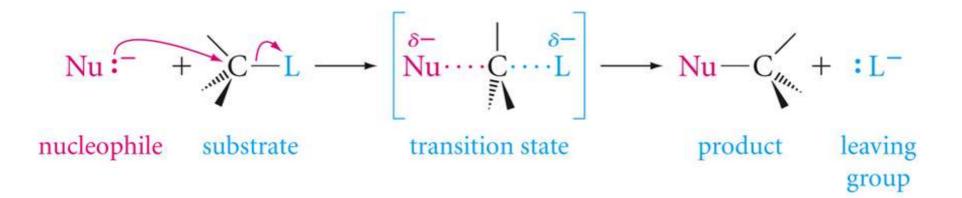

f) $I^- + CH_2 = CHCH_2Br \longrightarrow CH_2 = CHCH_2I + Br^-$

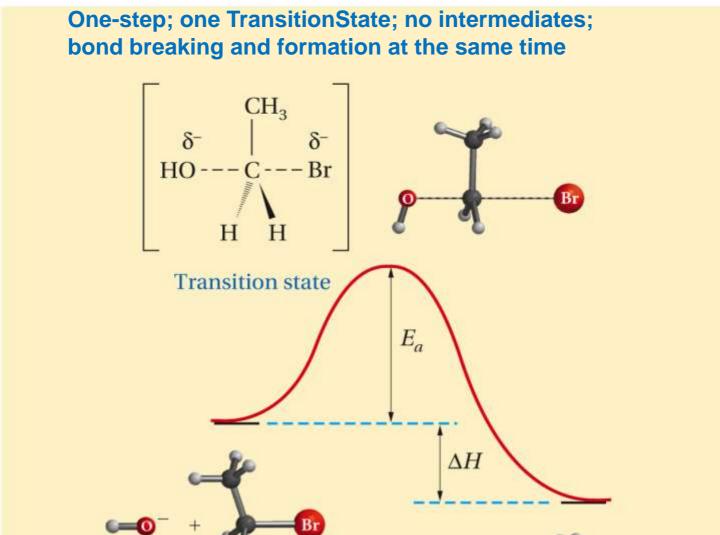
> Aryl halides and vinyl halides, do not undergo nucleophilic substitution.


Ar-X + Nu
$$\longrightarrow$$
 Ar-Nu + X-
RCH=CH-X + Nu \longrightarrow RCH=CH-Nu + X-

Elimination occurs when the nucleophilic reagent is basic.

but





6.3 Nucleophilic Substitution Mechanisms : (S_N1, S_N2)

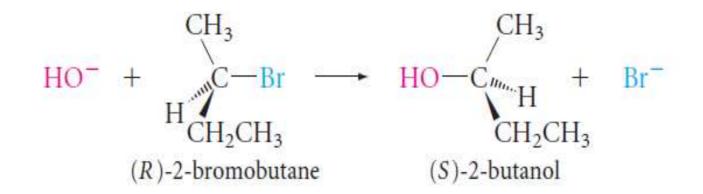
S_N2 Mechanism :

One-step process: Bond to the leaving group is breaking at the same time the bond to the nucleophile is starting to form

Reaction coordinate

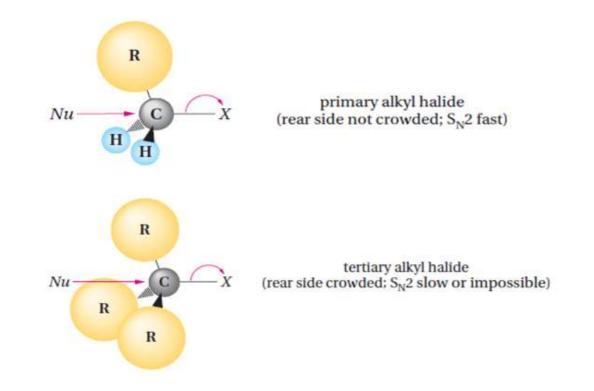
Br

CH₃CH₂OH + Br⁻

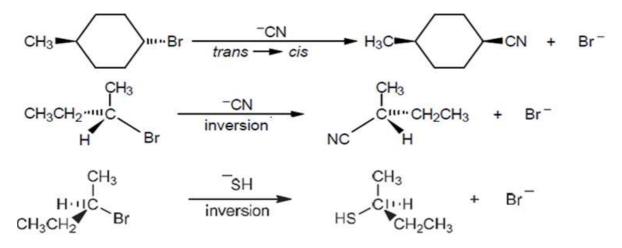

 $HO^- + CH_3CH_2Br$

Characteristics of S_N 2 reactions:

1. Rate : depends on concentration of both (nucleophile + substrate):


if concentration of RX is doubled, rate is doubled if concentration of RX is doubled, rate is doubled

2. Stereochemistry: S_N2 reactions occur with inversion of configuration:


3. S_N^2 reaction rates : (determined by steric factor – crowding) methyl halides > primary > secondary >> tertiary less crowded $\xrightarrow{\psi}$ most crowded

(vinyl and aryl : no reaction - leaving group at sp² C)

PROBLEM 6.4 Predict the product from the S_N2 reaction of

- a. trans-4-methylcyclohexyl bromide with cyanide ion.
- b. (S)-2-bromopentane with cyanide ion.
- c. (R)-2-chlorobutane with NaSH.

PROBLEM 6.5 Arrange the following compounds in order of *decreasing* S_N2 reactivity toward sodium ethoxide: CH₃ CH₃ CH₃CH₂CHBr CH₃CHCH₂Br CH₃CH₂CH₂CH₂CH₂Br

 $CH_{3}CH_{2}CH_{2}CH_{2}Br > (CH_{3})_{2}CHCH_{2}Br > CH_{3}CH_{2}CH(CH_{3})Br$

least crowded

most reactive

most crowded

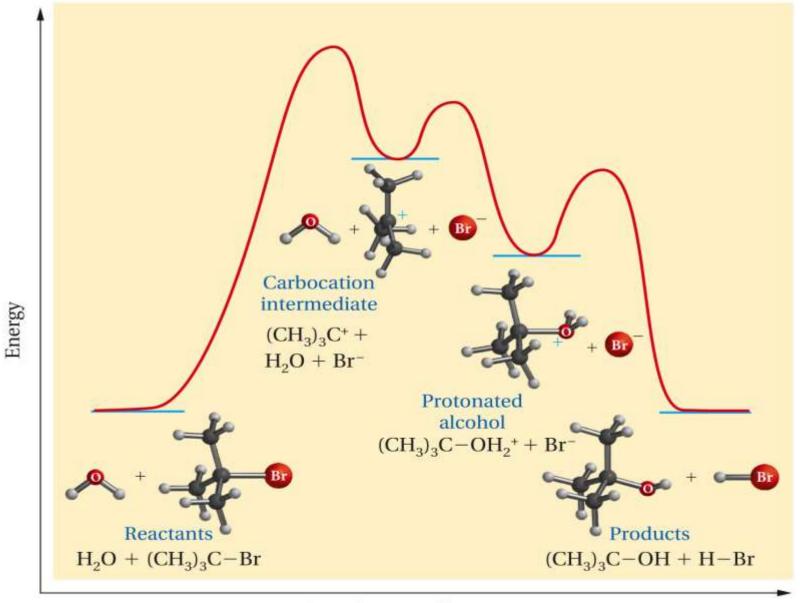
least reactive

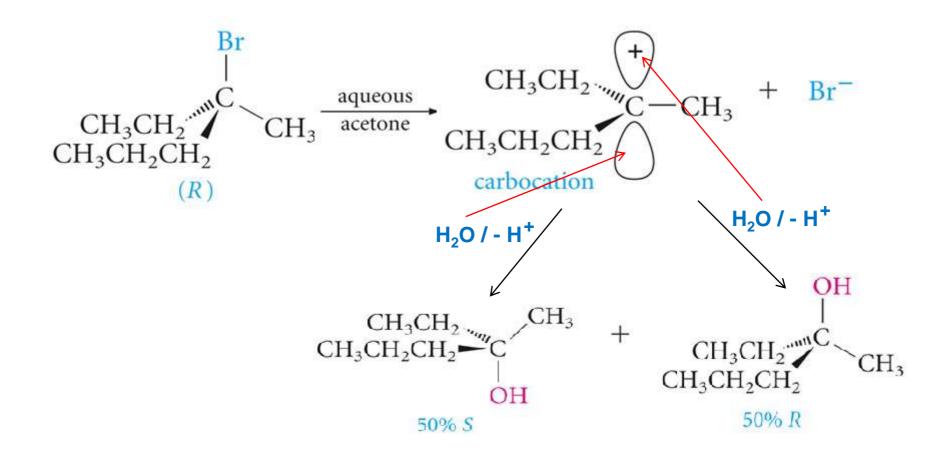
Summary of S_N2 reactions :

- **1-** $S_N 2$ is one step (2nd order reaction, bi-molecular)
- 2- favored for : a) methyl + primary halidesb) needs strong nucleophile
- 3- slower with secondary and **not at all** with tertiary halides.
- 4- occur with inversion of configuration.
- 5- rate depends on conc. of nucleophile + substrate (R-X).
- 6- rate : methyl halides > primary > secondary >> tertiary rate depends on **steric hindrance** (crowding)

methyl >
$$1^{\circ}$$
 > 2° > 3° (vinyl, aryl)

6.5 S_N1 Mechanism : two step process:


1- Step 1 : Leaving group leaves to form a carbocation intermediate


2- Step 2 : Carbocation then combines with nucleophile.

Two steps; one TransitionStates; one intermediate; bond breaking first then bond formation

Reaction coordinate

Summary of S_N1 reactions

- 1- S_{N1} is a two-step process (1st order reaction, uni-molecular)
- 2- requires polar protic solvent.
- 3- favored for a) tertiary halides, b) weak nucleopiles (neutral).
- 4- slow with secondary, not at all with primary and methyl
- 5- S_N 1 occur with racemization of configuration.
- 6- rate depends only on the concentration of substrate (alkyl halide), and **NOT on Nu** (its concentration or strength).
- 7- rate: tertiary halides > secondary >> primary >>methyl (No reaction with vinyl and aryl halides)
- 8- depends on Carbocation Stability: $3^{\circ} > 2^{\circ} > 1^{\circ} > methyl$

Table 6.2 — Comparison of S _N 2 and S _N 1 Substitutions				
Variables	S _N 2	S _N 1		
Halide structure				
Primary or CH ₃	Common	Rarely*		
Secondary	Sometimes	Sometimes		
Tertiary	Rarely	Common		
Stereochemistry	Inversion	Racemization		
Solvent	Rate is retarded by polar protic solvents and increased by polar aprotic solvents	Because the intermedi- ates are ions, the rate is increased by polar solvents		
Nucleophile	Rate depends on nucleophile con- centration; mechanism is favored when the nucleophile is an anion	Rate is independent of nucleophile concen- tration; mechanism is more likely with neutral nucleophiles		

*Allyl and benzyl substrates are the common exceptions (see Problem 6.7b).

Nucleophilicity :

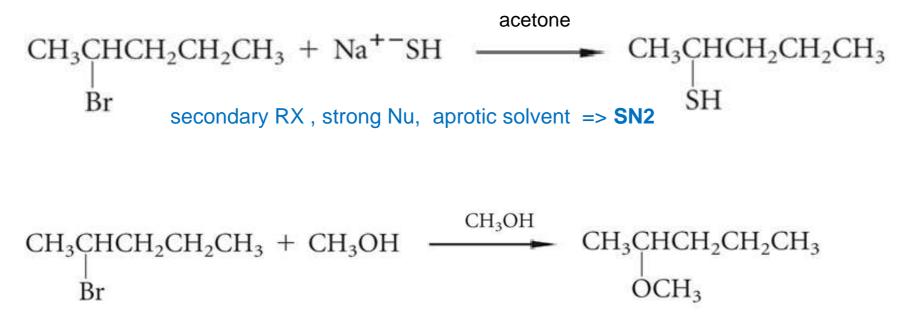
1. Negative ions are stronger than the corresponding neutral ones.

 $HO^- > HOH$ $RS^- > RSH$ $RO^- > ROH$

2. Elements low in the periodic table stronger than elements above (Nu increases going down a group)

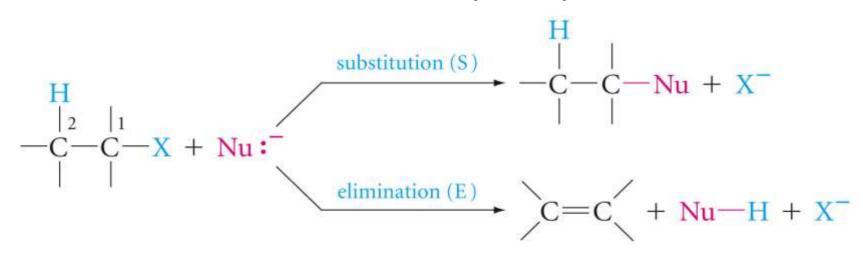
 $HS^- > HO^ I^- > Br^- > CI^- > F^-$

3. Across a row (period): the more electronegative the less nucleophilic. (Nu decreasing from left to right)

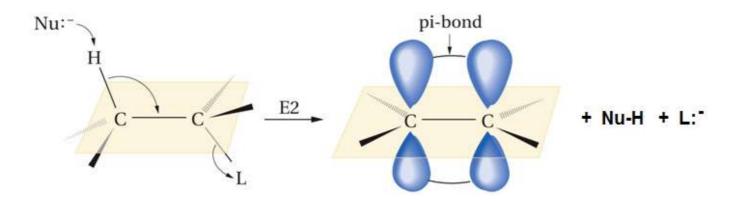

$$\begin{array}{cccc} R & R \\ R - C^- > & N^- > R - O^- > F^- & and & H_3N \colon > H_2O \colon > H\ddot{F} \\ R & R & \end{array}$$

Effect of solvent:

S_N1 require polar protic solvent (H₂O, CH₃OH, C₂H₅OH)

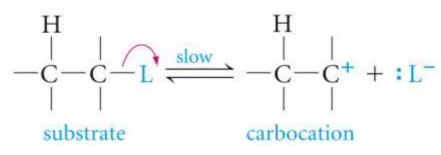

S_N2 **prefer aprotic** solvents (acetone, DMF, DMSO)

Question : Which mechanism do you predict for the following reactions?

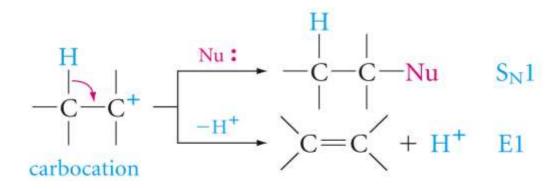


secondary RX , weak Nu, protic solvent => SN1

6.7 Elimination (Dehydrohalogenation) : (E1, E2)



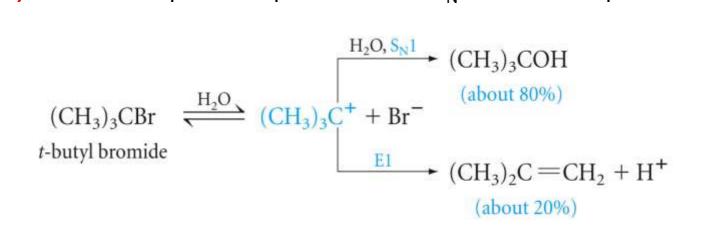
E2 mechanism : one step process (like S_N2) : (H-C-C-L) in one plane, H and L anti (opposite)



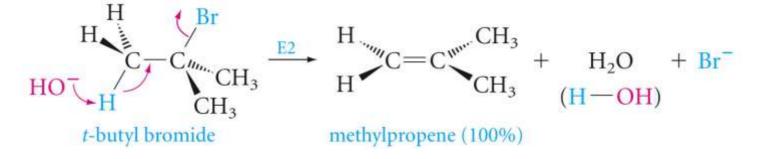
E1 mechanism : two-step (like S_N1) :

Step 1: loss of leaving group to form carbocation :

Step 2: loss of proton to form a pi-bond :

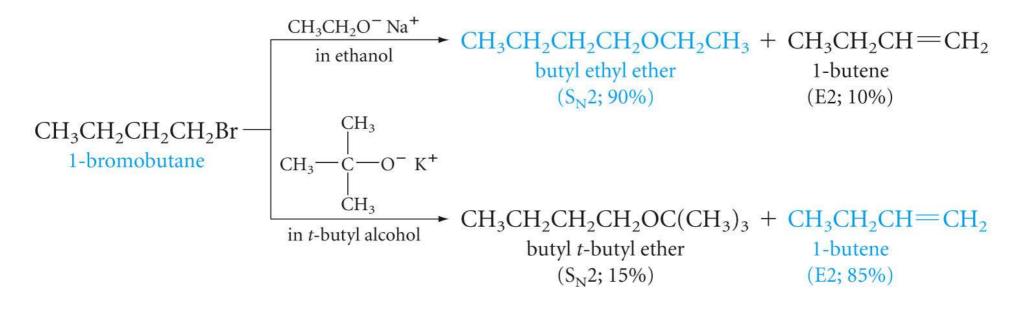


6.8 Substitution and Elimination in Competition :


a) Tertiary Halides :

Substitution : only $S_N 1$. Elimination : E1 or E2.

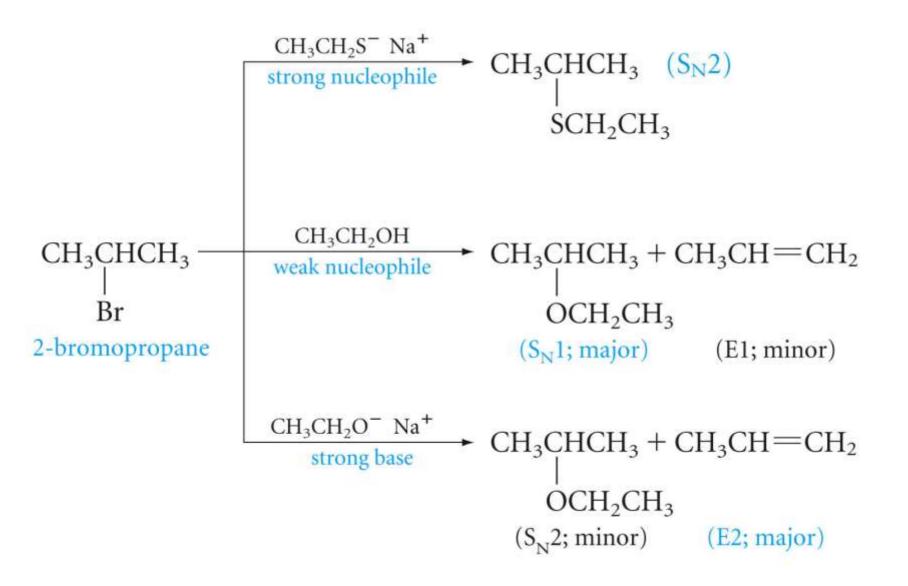
1) Weak nucleophile and polar solvent : S_N1 and E1 compete


2) Basic nucleophiles : only elimination (CH₃O⁻, HO⁻, CN⁻)

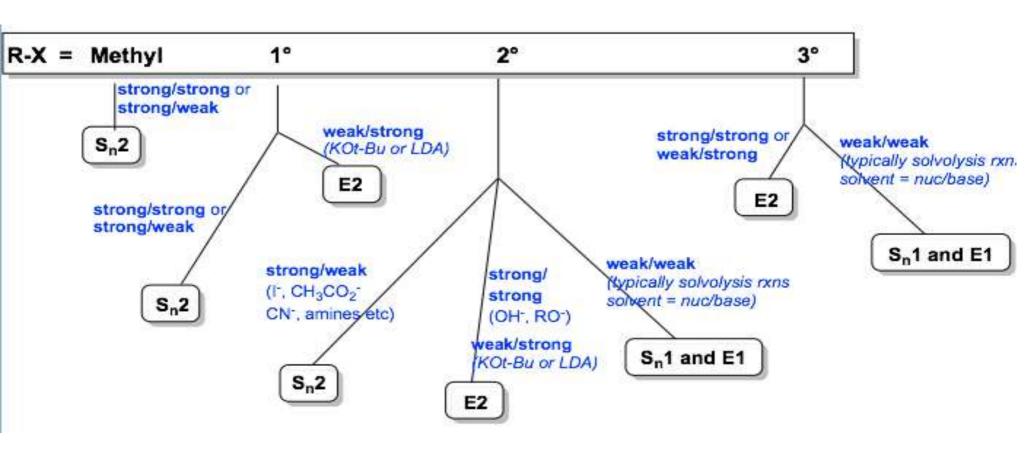
b) Primary Halides :

Substitution : only $S_N 2$.

Elimination : only E2 (require bulky strong base like t-BuO-)


c) Secondary Halides : $S_N 2 / S_N 1$; E1 / E2 : all possible.

depends on 1) nucleophile (strength and basicity)2) solvent (protic, aprotic)

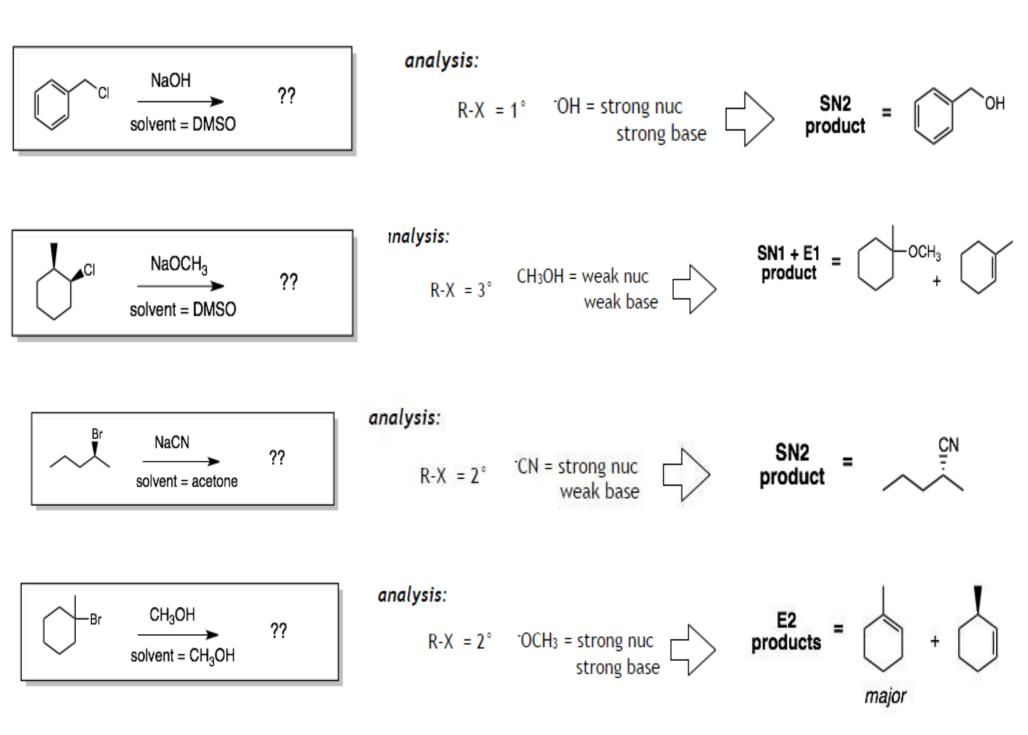

strong Nu (not basic) : S_N2 (with –ve charge)

weak Nu (+ polar protic solvent) : S_N1 (neutral)

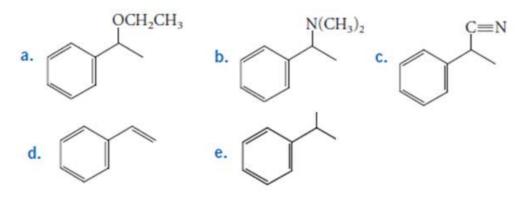
strong base (NaOH, NaOCH3) : E2

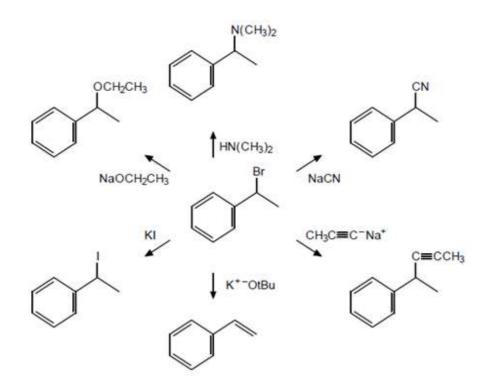
A Summary of Substitution and Elimination Reactions					
Halide type	S _N 1	S _N 2	E1	E2	
RCH ₂ X (primary)	Does not occur	Highly favored	Does not occur	Occurs when strong bases are used	
R ₂ CHX (secondary)	Can occur with benzylic and allylic halides	Occurs in com- petition with E2 reaction	Can occur with benzylic and allylic halides	Favored when strong bases are used	
R ₅ CX (tertiary)	Favored in hydroxylic solvents	Does not occur	Occurs in com- petition with $S_N 1$ reaction	Favored when bases are used	

	R-X =			
Nuc/Base Strength	methyl	1°	2°	3°
strong/strong	SN2	SN2	E2	E2
strong/weak	SN2	SN2	SN2	no reaction
weak/strong	no reaction	E2	E2	E2
weak/weak	no reaction	no reaction	SN1/E1	SN1/E1


strong/strong	weak/strong	strong/weak	weak/weak
OH-		R-NH ₂ (amines)	H₂O
R-O-		R-S ⁻	R-OH (alcohols)
(deprotonated alcohols not bulky)	KOt-Bu	CN-, N ₃ -, I-	0
R ₂ N ⁻ (deprotonated amines not bulky)	LDA	R O O	R OH (carboxylic acids)
		H ₂ S, R-SH	

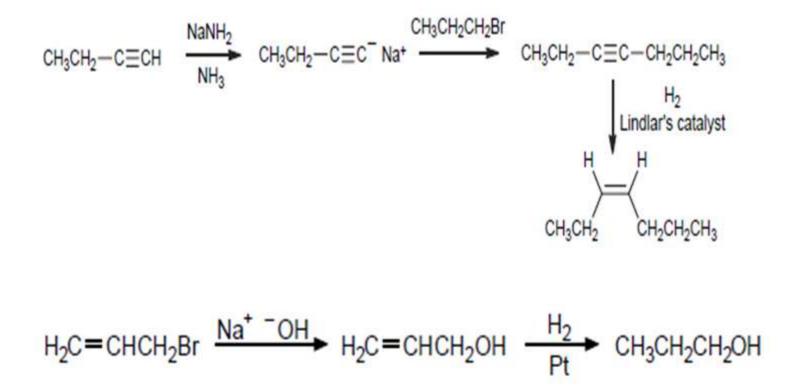
Nucleophiles / Bases :


- (1) <u>Strong base / strong nucleophile : strong</u> bases are strong nucleophiles. (-vely charged oxygen and nitrogen)
- (2) Weak base / weak nucleophile : weak bases are weak nucleophiles. (neutral oxygen Nu : HOH, ROH)
- (3) Strong base / weak nucleophile : bulky (large) strong base (t-BuO⁻)
- (4) Strong nucleophile / weak base :


a) neutral electronegative : (nitrogen, sulfur : amines, thiols)

b) -vely charged with delocalized –ve charge: (acetate)
 or –ve charge on a large atom: (sulfide, iodide ions)

6.25 Provide equations for the synthesis of the following compounds from 1-bromo-1-phenylethane.


6.28 Combine the reaction in eq. 3.53 with a nucleophilic substitution to devise

a. a two-step synthesis of
$$CH_3C \equiv C - CH_2 - CH_2$$
 from CH_2Br .

b. a four-step synthesis of $CH_3C \equiv CCH_2CH_3$ from acetylene and appropriate alkyl halides.

The order in which the alkyl halides were used could be reversed, with the same overall result.

- 6.29 Combine a nucleophilic substitution with a catalytic hydrogenation to synthesize
 - a. *cis*-3-heptene from butyne and bromopropane.
 - **b.** CH₃CH₂CH₂OH from CH₂=CHCH₂Br.

