

# Molecular Biology (3)

The human genome

Mamoun Ahram, PhD

### Resources



- This lecture
- Cooper, Ch. 6, pp. 157-160, 195-205, 209-212

### The human genome project



> total collection of DNA

A \$3 billion, 13-year, multi-national project launched in 1990 led by the US government to (know the)

sequence the human genome and to map and identify the genes (a draft was published in 2001 and 92% was completed in 2004).

The sequence of Nitrogen bases





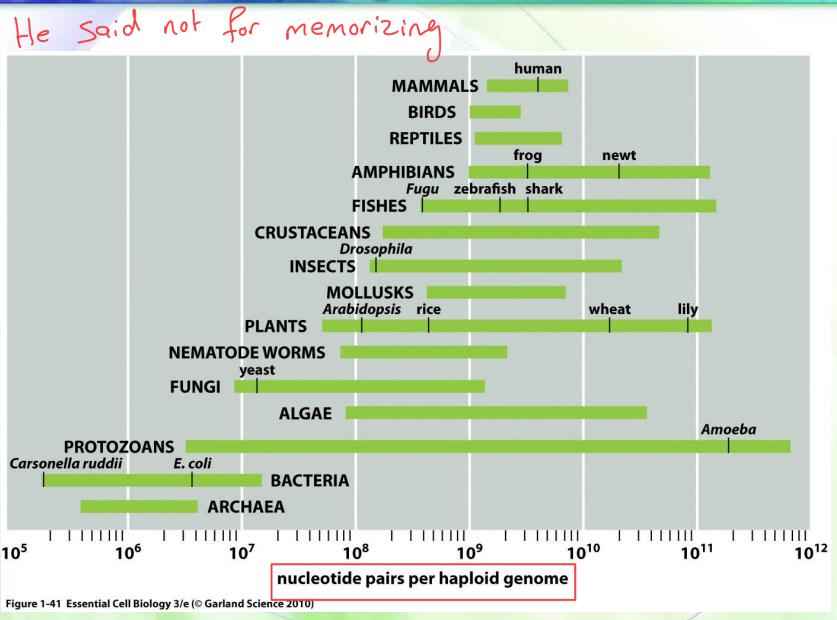


### Major outcomes



- Determination of the number of human genes
- Development of major technologies
- Completed sequences of other genomes
- Open discussion of legal and ethical issues

La (NOW we can know the number of gens in about 24 hours and it cost about 900\$)




| CDECIEC                                | DACE DAIDS   | CENES       | CUROMOSOMES |
|----------------------------------------|--------------|-------------|-------------|
| SPECIES                                | BASE PAIRS   | GENES       | CHROMOSOMES |
|                                        | (estimated)  | (estimated) |             |
| Human (Homo sapiens)                   | 3.2 billion  | X ~ 25,000  | 46          |
| Mouse (Mus musculus)                   | 2.6 billion  | X ~ 25,000  | 40          |
| Fruit Fly<br>Drosophilia melanogaster) | 137 million  | 13,000      | 8           |
| Roundworm<br>(Caenorhabditis elegans)  | 97 million   | 19,000      | 12          |
| Yeast<br>(Saccharomyces cerevisia)     | 12.1 million | 6,000       | 32          |
| Bacteria (Escherichia coli)            | 4.6 million  | 3,200       | 1           |
| Bacteria (H. influenzae)               | 1.8 million  | 1,700       | 1           |
|                                        |              | V           |             |

the doctor did not said memorise if ( I will not even if he said that and it is old numbers too that

### Nucleotides per genomes





### **DNA** homology



Human

Rabbit Human Rat Mouse

Sn1 I

G+A

G+A

E-box/USF

#### (i.e. sequence similarity)

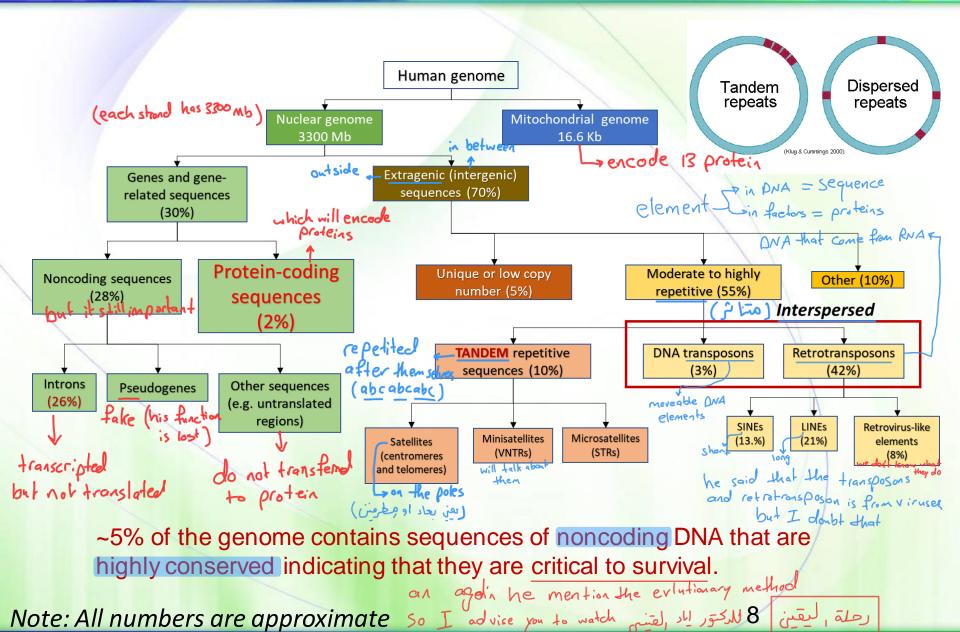
G+A Sp1 II

Other in some is most important.

CGTGGACCGCGCTCCCAGCTCCTCGGCCTCGCCTTCCAACCATCCGCCCACCGGCCCCAGAGCAGCGTGC

TRE

|                             |                   | TTL.            | opi i         |  |
|-----------------------------|-------------------|-----------------|---------------|--|
| CCCGGGGCCGCAGCATCGCGC       | GGGGCGCGCGCGG-C   | TCGATCCGGGTTCCT | reegegegetec  |  |
| * ** * ******               | **1 *1111111111   |                 | 1 1 111111 11 |  |
| CCAGCTTCCCCTCCGCCAGCCCCGCGA |                   |                 |               |  |
|                             | **  *             |                 |               |  |
|                             | GCACACCGCGCGCGGCC |                 |               |  |
| *111-1                      | *  **             |                 |               |  |
| -236 CGCGCAC                | :AGGCGCCGCGCGCGCC | TCGATCCGGGTTCC1 | rggggggggg    |  |
|                             |                   |                 |               |  |


GCGGCAGGCGGCGGCCTGC-CGGCAGCGTGGGCGCAGCGCGCGCGGGGAGGGCGCCGGG-GGAGGG GCGGGAGGAGGCGGGCCTGC-TGGCGGCGTGGGCGCG-TGCGCGCGCGGGAGGGCGCGG-AGGAGGG

Sp1 IV CAAT-box Sp1 III GGCGGGGCCGCCCCCGCGCGCGCGCGCTGGGCTCTCTCGGCCAATGAGCGGCGTCCACATGCCGCGGCGG GGCGGGGCCGCCCGCGCGCGCGCGCGCTGGGCTCTCTCGGCCAATGAGCGGCGTCCACATGCCC--GCGG



### Components of the human genome





### The ENCODE project (2003-on)



all the numbers all approximate (don't memorize it significant number) but memorize it as approximatly number so it maybe asked in the exam

- ENCODE: Encyclopedia of DNA Elements (ENCODE)
- 80% of the entire human genome is relevant (either transcribed, binds to regulatory proteins, or is associated with some other biochemical activity).

| Protein-coding genes | 20,687 |
|----------------------|--------|
| Short noncoding RNAs | 8801   |
| Long noncoding RNAs  |        |
| Pseudogenes          | 11.224 |

factors will talk about it

| Percentage of genome  | 74.7%           |        |
|-----------------------|-----------------|--------|
| transcribed into RNA  | but 2% transfer | r,     |
| Percentage of genome- | 8.1%            | المناح |
| hinding transcription |                 |        |

> to transfer Data to information

### On March 31, 2022...

Finished 92 % of human gen

#### Gene annotation

A gene: a region of DNA that is transcribed.

A transcript: a RNA molecule that is produced by transcription

| Number of genes     |                           | 63,494  |
|---------------------|---------------------------|---------|
| Protein coding      | number of genes that make | 19,969  |
| Number of exclusive |                           | 3,604   |
| Protein coding      |                           | 140     |
| Number of transcr   | ipts                      | 233,615 |
| Protein coding      | protein number            | 86,245  |
| Number of exclusive | ve transcripts            | 6,693   |
| Protein coding      |                           | 2,780   |
|                     | $O_1$                     |         |

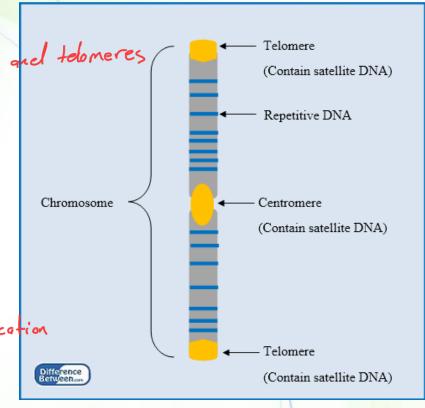
#### RESEARCH ARTICLE

The complete sequence of a human genome they could be 200k ince its initial release in 2000, the human

the genome, leaving important heterochromatic regions unfinished. Addressing the remaining 8% of the genome, the Telomere-to-Telomere (T2T) Consortium presents a complete 3.055 billion-base pair sequence of a human genome, T2T-CHM13, that includes gapless assemblies for all chromosomes except Y, corrects errors in the prior references, and introduces nearly 200 million base pairs of sequence containing 1956 gene predictions, 99 of which are predicted to be protein coding. The completed regions include all centromeric satellite arrays, recent segmental duplications, and the short arms of all five acrocentric chromosomes, unlocking these complex regions of the genome to variational and functional studies.



# Tandem repeats


### Satellite (macro-satellite) DNA



Regions of 5-300 bp repeated 106-107 times and found in centroneres and telemeres

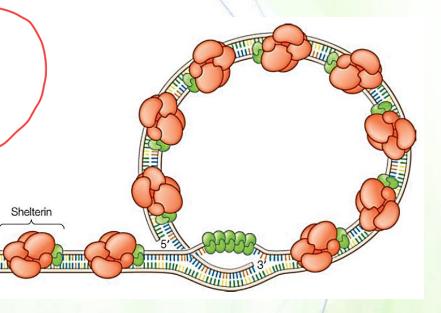
- Centromeres and telomeres
- Centromeric A/T-rich repeats
  (171 bp) called α-satellite
  unique to each chromosome
  (you make chromosome-specific
  probes) by fluorescence in situ
  hybridization (FISH).

  Twill hybridize a prob that more to specific



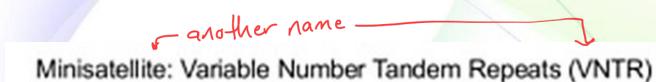


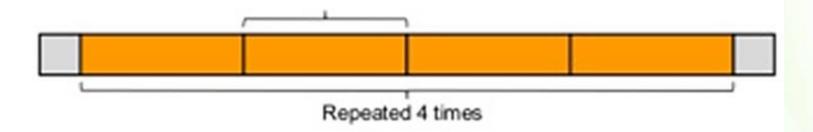
### Telomeric repeats



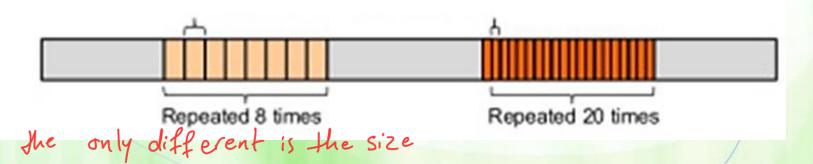

مرلال جم

(TTAGGG) is repeated hundreds to thousands of times at the termini of human chromosomes with a 3' overhang of single-stranded DNA.


The repeated sequences form loops that bind a protein complex called shows shelterin, which protects the chromosome termini from degradation.


- Telomeric repeat-containing RNA (TERRA): a long non-coding RNA transcribed from telomeres and functions in:
  - maintaining the integrity of chromosome termini,
  - regulating telomerase activity,
  - maintaining the heterochromatic state of telomeres,
  - protecting DNA from deterioration or fusion with neighboring chromosomes




#### Mini- and Micro-satellite DNA







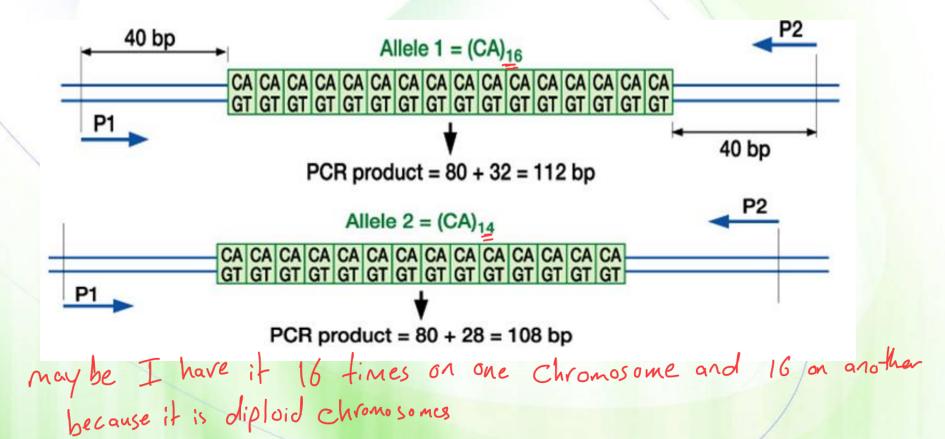
Microsatellite: Short Tandem Repeats (STR) – Simple Sequence Repeats (SSR)



### Mini-satellite DNA



Mini satellite sequences or VNTRs (variable number of tandem repeats) of 20 to 100 bp repeated 20-50 times

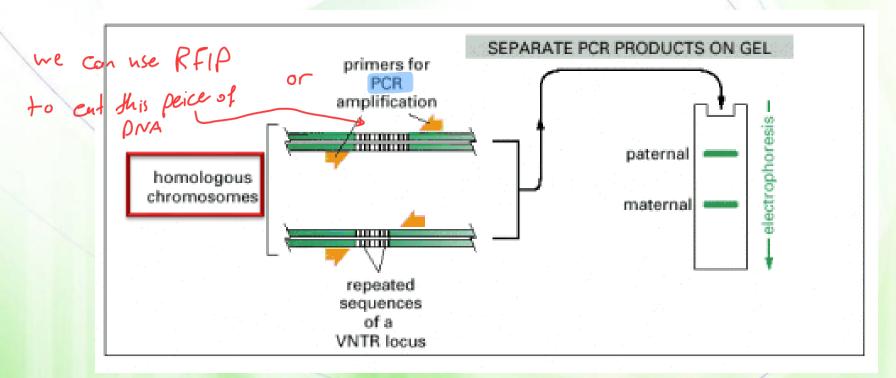



### Micro-satellite DNA



Same the Mini-Satellite > Same location but different sequence

STRs (short tandem repeats) of 2 to 10 bp repeated 10 100 times




### Polymorphisms of VNTR and STR

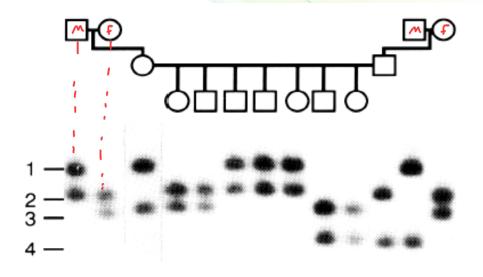


differences in PMA

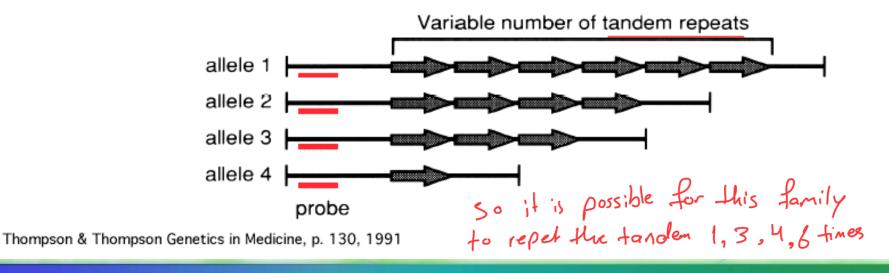
- STRs and VNTRs are highly variable among individuals (polymorphic).
  - They are useful in DNA profiling for forensic testing.



#### STRs and VNTRs as DNA Markers

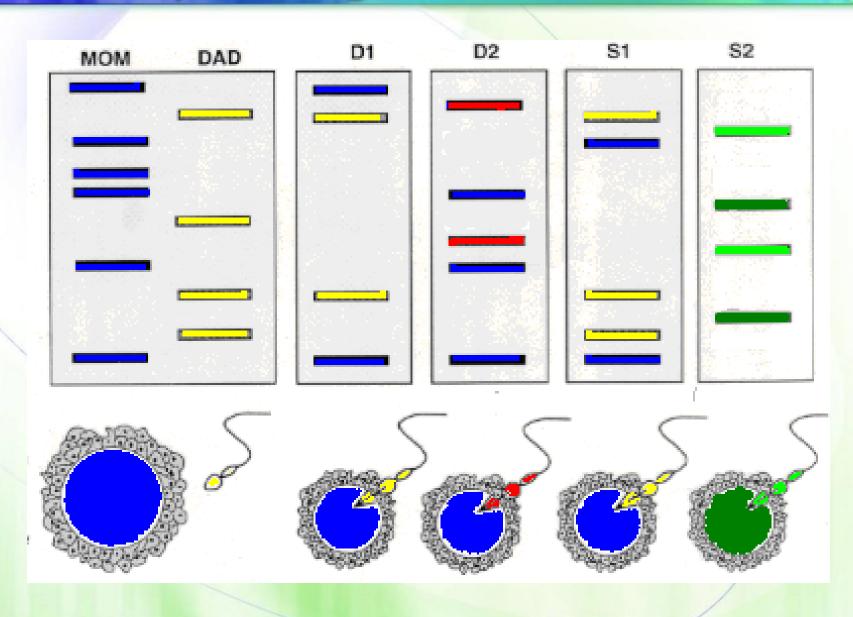






### Real example

#### STR is more used than VNTR






#### single-locus probe but multiple alleles



## Paternity testing



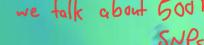


### Single nucleotide polymorphism (SNPs)



#### Another source of polymorphism

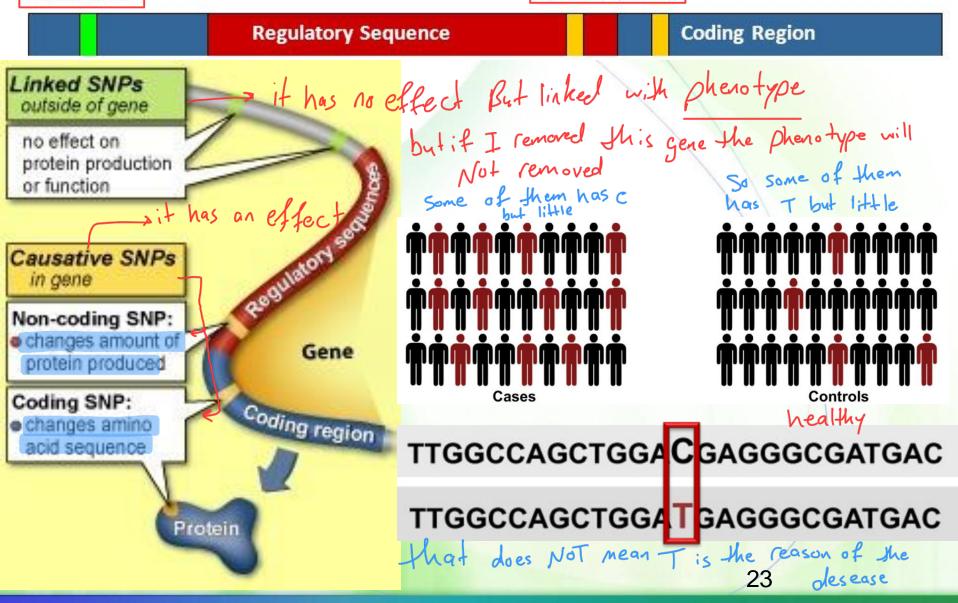
- Another source of genetic variation
- Single-nucleotide substitutions of one base for another
- Two or more versions of a sequence must each be present in at least one percent of the general population
- SNPs occur throughout the human genome about one in every 300 nucleotide base pairs.
  - ~10 million SNPs within the 3-billion-nucleotide human genome
  - Only 500,000 SNPs are thought to be relevant


that connected with desease or < something important

## Examples



| Maternal AACTGGACTT G  allele  Frequency in population: | AAGCATCTACGTT A TCCATGAAG  AAGCATCTACGTT C TCCATGAAG  51% A 90%  49% (minor allele) C 10% (minor allele)  Chomosome Individual 1 | the percent of of SNPs must be more 1% of population otherwise we call it mutation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Individual 4                                                               |
|---------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|
| Hetro zygous                                            | Chr 2 CGATATTCCTAT  copy1 GCTATAAGGATA                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CGATATTCCTATCGAATGTCGCTATAAGGATAGCTTACAG                                   |
| SMPs [                                                  | Chr 2 CGATATTCCCAT copy2 GCTATAAGGGTA Both stands for Both                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CGATATTCCCCATCGAATGTCGCTATAAGGGTAGCTTACAG                                  |
|                                                         | Individual 2                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Individual 5                                                               |
| Homo zygons                                             | Chr 2 CGATATTCCCCAT copy1 GCTATAAGGGTA                                                                                           | CGAATGTC Chr 2 copy1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | CGATATTCCCCATCGAATGTCGCTATAAGGCTTACAG                                      |
| spls                                                    | Chr 2 CGATATTCCCAT copy2 GCTATAAGGGTA                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CGATATTCCTATCGAATGTCGCTATAAGGATAGCTTACAG                                   |
|                                                         | Individual 3                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Individual 6                                                               |
|                                                         | Chr 2 CGATATTCCTAT  copy1 GCTATAAGGATA                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CGATATTCCCCATCGAATGTCGCTATAAGGGTAGCTTACAG                                  |
|                                                         | Chr 2 CGATATTCCTAT copy2 GCTATAAGGATA                                                                                            | T-0.00 T- | CGATATTCC <mark>T</mark> ATCGAATGTC<br>GCTATAAGG <mark>A</mark> TAGCTTACAG |


# Categories of SNPs do not forget we talk about 500 k





Linked SNPs

Causative SNPs

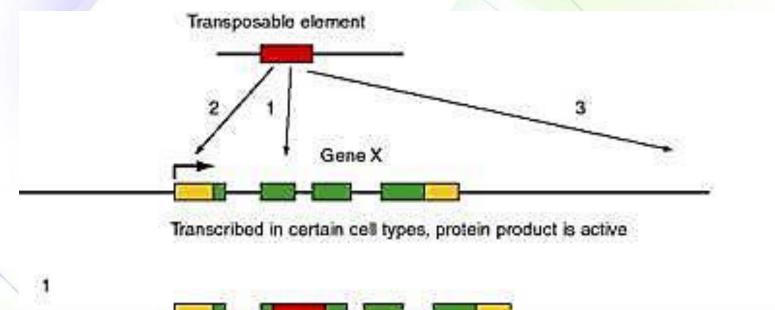


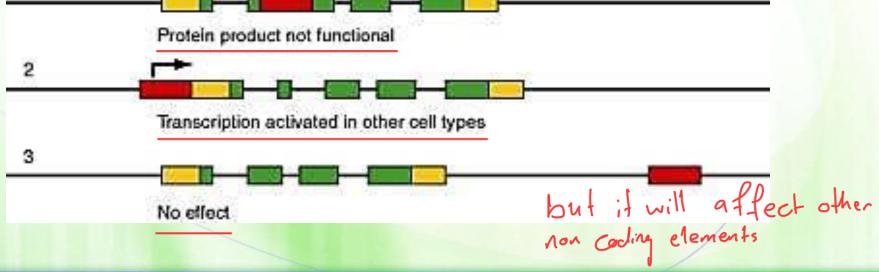


Interspersed repeats

Repeated Regions but with spoces between them
(ouchus)

## Transposons (jumping genes)




- They are segments of DNA that can move from their original position in the genome to a new location.
- Two classes:
  - DNA transposons (3% of human genome) from PMA of virueses
  - RNA transposons or retrotransposons (42% of human genome).
    - → Long interspersed elements (LINEs, 21%)
      - Short interspersed elements (SINEs, 13%)
    - An example is Alu (300 bp) as restrection endo clease called Alu
      Retrovirus-like elements (8%) as cut this element
- Over 99% of the transposons in the human genome lost their ability to move, but we still have some active transposable elements that can sometimes cause disease.
  - Hemophilia A and B, severe combined immunodeficiency, porphyria, predisposition to cancer, and Duchenne muscular dystrophy.

25





