


# Introduction to Biochemistry

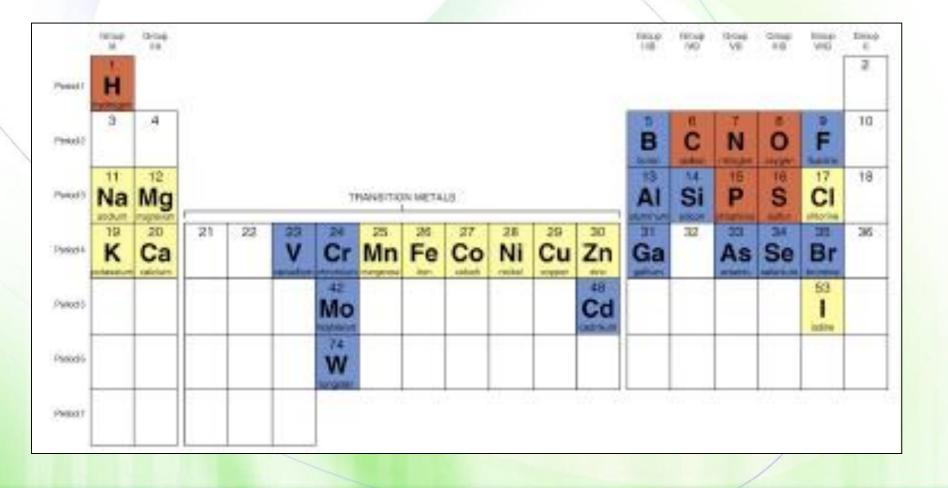


#### What is **Biochemistry**?

Biochemistry is the science concerned with studying the various molecules that occur in living cells and organisms and their chemical reactions.



# **Biochemistry = understanding life**


- Know the chemical structures of biological molecules
- Understand the biological function of these molecules
- Understand interaction and organization of different molecules within individual cells and whole biological systems
- Understand bioenergetics (the study of energy flow in cells)

#### **Biochemistry in medicine:**

- Explains all disciplines
- diagnose and monitor diseases
- design drugs (new antibiotics, chemotherapy agents)
- understand the molecular bases of diseases

#### **Chemical elements in living creatures**

 Living organisms on Earth are composed mainly of 31 elements



# **Abundant elements**

- Four primary elements: carbon, hydrogen, oxygen, and nitrogen
  - 96.5% of an organism's weight
- The second groups includes sulfur and phosphorus
- Most biological compounds are made of only SIX elements: C, H, O, N, P, S
- Others are minor, but essential, elements
  - Mostly metals

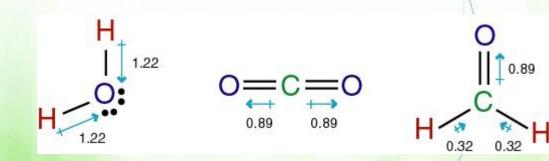
| Element                                                                                                                                                                                                                                     | Comment                                                                                      | the |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|-----|
| First Tier<br>Carbon (C)<br>Hydrogen (H)<br>Nitrogen (N)<br>Oxygen (O)                                                                                                                                                                      | Most abundant<br>in <i>all</i><br>organisms                                                  |     |
| Second Tier<br>Calcium (Ca)<br>Chlorine (Cl)<br>Magnesium (Mg)<br>Phosphorus (P)<br>Potassium (K)<br>Sodium (Na)<br>Sulfur (S)                                                                                                              | Much less<br>abundant but<br>found in <i>all</i><br>organisms                                |     |
| Third Tier<br>Cobalt (Co)<br>Copper (Cu)<br>Iron (Fe)<br>Manganese (Mn)<br>Zinc (Zn)                                                                                                                                                        | Metals present<br>in small<br>amounts in<br><i>all organisms</i><br>and essential<br>to life |     |
| Fourth Tier<br>Aluminum (Al)<br>Arsenic (As)<br>Boron (B)<br>Bromine (Br)<br>Chromium (Cr)<br>Fluorine (F)<br>Gallium (Ga)<br>Iodine (I)<br>Molybdenum (Mo)<br>Nickel (Ni)<br>Selenium (Se)<br>Silicon (Si)<br>Tungsten (W)<br>Vanadium (V) | Found in or<br>required<br>by <i>some</i><br><i>organisms</i><br>in trace<br>amounts         |     |



# **Covalent Bonds**



# Important properties of bonds


- Bond strength (amount of energy that must be supplied to break a bond)
- Bond length: the distance between two nuclei
- Bond orientation: bond angles determining the overall geometry of atoms

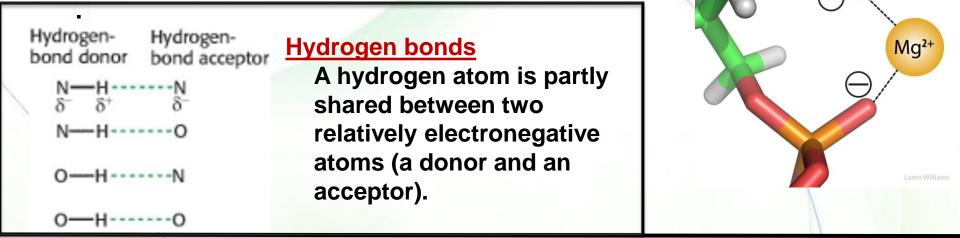
The three-dimensional structures of molecules are specified by the bond angles and bond lengths for each covalent linkage

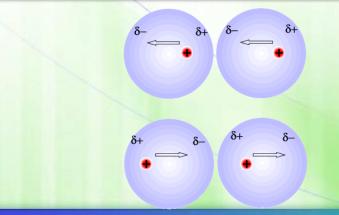
## Polarity of covalent bonds

- Covalent bonds in which the electrons are shared unequally in this way are known as polar covalent bonds. The bonds are known as "dipoles".
  - Oxygen and nitrogen atoms are electronegative
  - Oxygen and hydrogen
  - Nitrogen and hydrogen
  - Not carbon and hydrogen

Water is an excellent example of polar molecules, but not CO<sub>2</sub>.




#### **Non-covalent interactions**



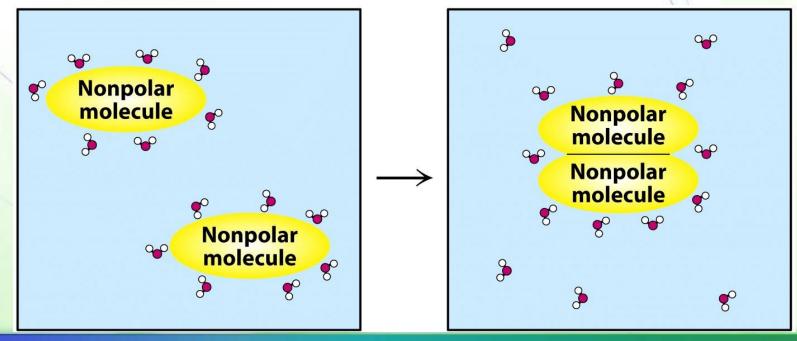

They are reversible and relatively weak.

**Electrostatic interactions (charge-charge interactions):** 

- They are formed between two charged particles.
- These forces are quite strong in the absence of water

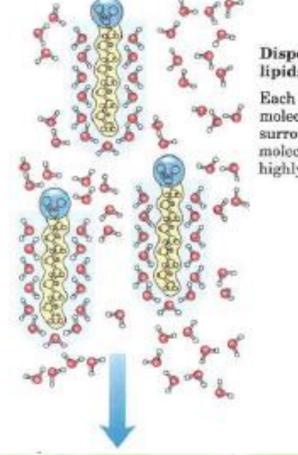





#### van der Waals interactions

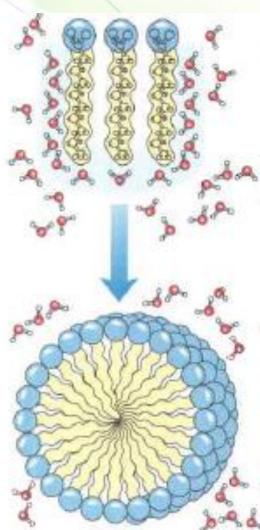
- Unequal distribution of electronic charge around an atom changes with time.
- The strength of the attraction is affected by distance.

# Hydrophobic interactions




- Not true interactions
- Self-association of nonpolar compounds in an aqueous environment
- Minimize unfavorable interactions between nonpolar groups and water




#### Hydrophobic interactions and micelle formation





#### Dispersion of lipids in H<sub>2</sub>O

Each lipid molecule forces surrounding H<sub>2</sub>O molecules to become highly ordered.



#### Clusters of lipid molecules

Only lipid portions at the edge of the cluster force the ordering of water. Fewer H<sub>2</sub>O molecules are ordered, and entropy is increased.

#### in a cage like structure

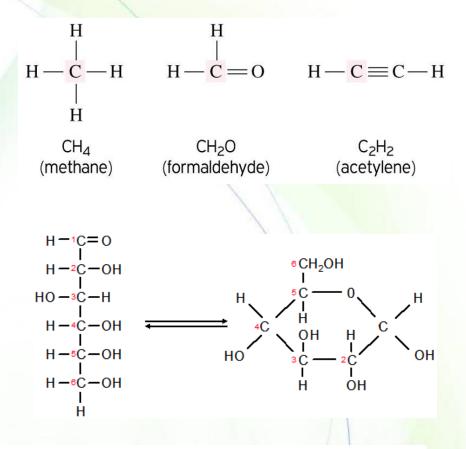
#### Micelles

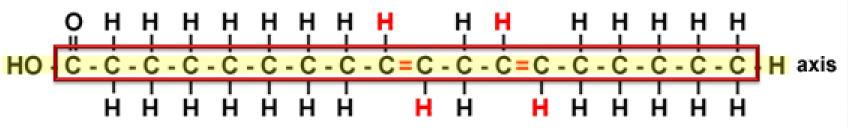
All hydrophobic groups are sequestered from water; ordered shell of H<sub>2</sub>O molecules is minimized, and entropy is further increased.

#### **Properties of non covalent Interactions**



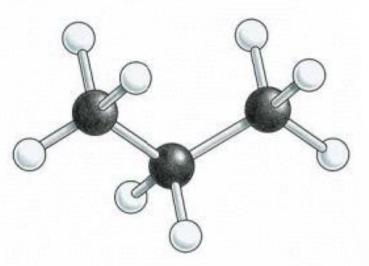
#### Reversible


- Relatively weak. 1-30 kj/mole vs. 350 kj/mole in C—C bond
- Molecules interact and bind specifically.
- Noncovalent forces significantly contribute to the structure, stability, and functional competence of macromolecules in living cells.
- Can be either attractive or repulsive
- Involve interactions both within the biomolecule and between it and the water of the surrounding environment.

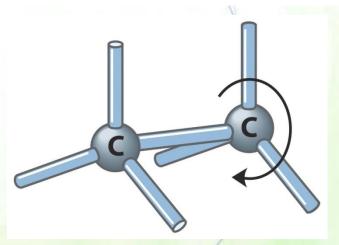

# Carbon

#### The road to diversity and stability

# Properties of carbon (1)

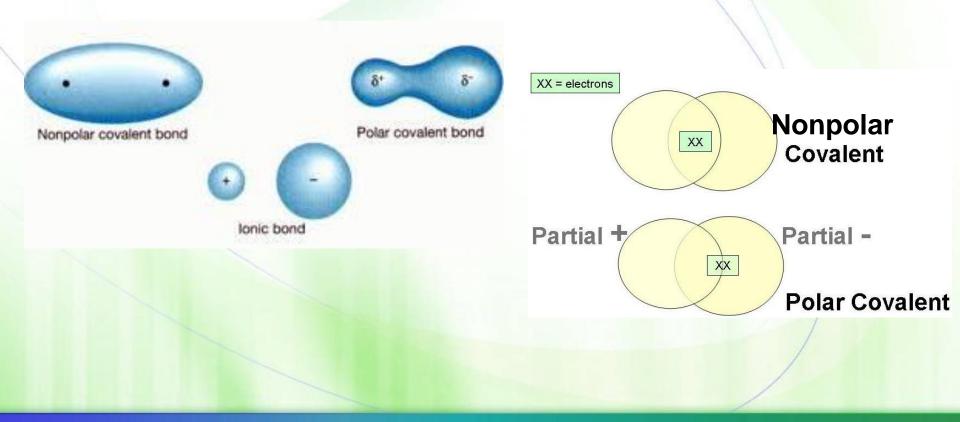

- It can form four bonds, which can be single, double, or triple bonds.
- Each bond is very stable.
  - strength of bonds: triple > double > Single)
- They link C atoms together in chains and rings.
  - These serve as a backbones.






## **Properties of carbon (2)**

- Carbon bonds have angles giving molecules threedimensional structure.
- In a carbon backbone, some carbon atoms rotate around a single covalent bond producing molecules of different shapes.




propane (CH3-CH2-CH3)



# Properties of carbon (3)

- The electronegativity of carbon is between other atoms.
  - It can form polar and non-polar molecules.
- Pure carbon is not water soluble, but when carbon forms covalent bonds with other elements like O or N, the molecule that makes carbon compounds to be soluble.



#### Functional groups (Groups of atoms attached to a carbon skeleton)



| Class of<br>Compound         | General<br>Structure <sup>a</sup>      | Functional<br>Group Structure | Functional<br>Group Name                             | Example                                      |
|------------------------------|----------------------------------------|-------------------------------|------------------------------------------------------|----------------------------------------------|
| Alkanc                       | RCH <sub>2</sub> -CH <sub>3</sub>      |                               | Carbon-carbon and<br>carbon-hydrogen<br>single bonds | H <sub>3</sub> C-CH <sub>3</sub>             |
| Alkene                       | RCH=CH <sub>2</sub>                    | C=C                           | Carbon-carbon<br>double bond                         | $H_2C = CH_2$                                |
| Alcohol                      | ROH                                    | -OH                           | Hydroxyl group                                       | CH <sub>3</sub> OH                           |
| Thiol                        | RSH                                    | —SH                           | Thiol or sulfhydryl group                            | CH <sub>3</sub> SH                           |
| Ether                        | R-O-R                                  | -0-                           | Ether group                                          | CH <sub>3</sub> -O-CH <sub>3</sub>           |
| Amine <sup>b</sup> ]         | RNH2<br>R2NH<br>R3N                    | -N                            | Amino group                                          | H <sub>3</sub> C-NH <sub>2</sub>             |
| Imine <sup>b</sup>           | R=nh                                   | C=N-H                         | Imino group                                          | H <sub>3</sub> C<br>C=NH<br>H <sub>3</sub> C |
| Aldehyde                     | о<br>∥<br>R−С−н                        | O<br>□<br>□<br>−C−H           | Carbonyl group                                       | CH <sub>3</sub> C H                          |
| Ketone                       | $\mathbf{R} - \mathbf{C} - \mathbf{R}$ |                               | Carbonyl group                                       | O<br>CH <sub>3</sub> CCH <sub>3</sub>        |
| Carboxylic acid <sup>b</sup> | RCOOH                                  | о<br>  <br>~С—он              | Carboxyl group                                       | СН <sub>3</sub> С                            |

R-OR Ester group CH<sub>3</sub>C-OCH<sub>3</sub> ö н -Č-NH<sub>2</sub> R-Amide group CH<sub>3</sub>C-NH<sub>2</sub> Н 0 0 Phosphoric acid<sup>b</sup> HO - P - OHНО-Р-ОН Phosphoric acid group  $HO - \ddot{P} - OH$ ÓН ÔH OH О О Phosphoric acid СН3ОР-ОН R-O-P-OH -O--- P--OH Phosphoester group or phosphoryl group ÔH ÓН ÓН 0 О Phosphoric acid  $R - O - \ddot{P}$ -O - P - OH₿-OH Phosphoric anhydride  $CH_3O - P$ -OH anhydride<sup>b</sup> group ÓH ÓН ÓН ÓΗ

ÓΗ ÔH 0 Carboxylic acid-phosphoric acid R-P−OH **Р−О**Н Acyl-phosphoryl CH<sub>3</sub>C -0-₿—ОН mixed anhydride<sup>b</sup> anhydride ÓΗ ÓH ÒН

\*R refers to any carbon-containing group.

Ester

Amide

ester

<sup>b</sup> These molecules are acids or bases and are able to donate or accept protons under physiological conditions. They may be positively or negatively charged.

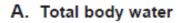
# Water

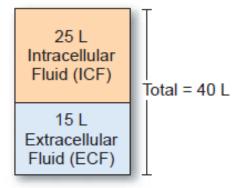


1. ~60% of our body is water, 70-85% of the weight of a typical cell

2. A solvent of many substances our bodies need such as glucose, ions, etc.

3. Acts as a medium in which acids and bases release their chemical groups to maintain a constant cellular environment or homeostasis.


4. Essential buffer that maintain pH


5. Temperature regulation- high specific heat capacity.

6. A participant in many biochemical reactions.

#### Water distribution in body compartments







B. Extracellular fluid

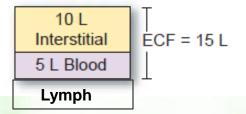
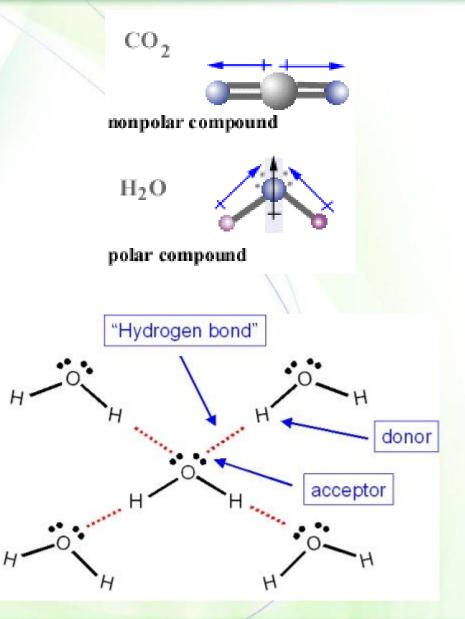
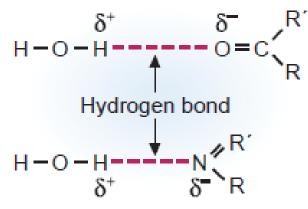



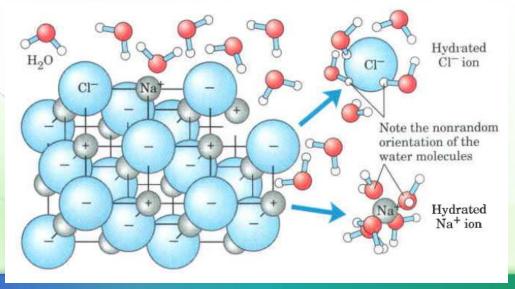

FIG. 4.2. Fluid compartments in the body based on an average 70-kg man.

# Properties of water (1)




- Water is a polar molecule as a whole because of:
  - the different
     electronegativitiy between
     Hydrogen and oxygen,
  - It is angular.
- Water is highly cohesive.
  Water molecules produce a network.




## Properties of water (2)

Water is an excellent solvent because It is small and it weakens electrostatic forces and hydrogen bonding between polar molecules.

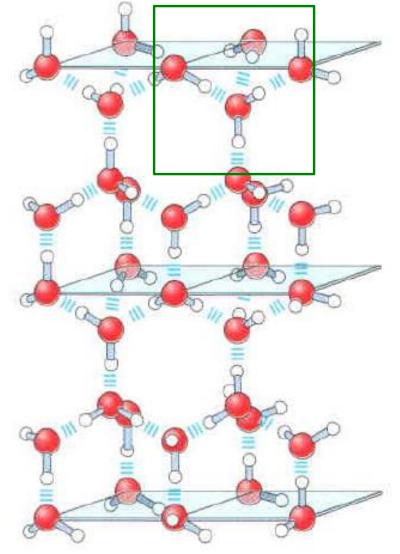


H-bonds between water and polar molecules. *R denotes additional atoms*.

Hydration shells surrounding anions and cations. where water is  $\delta^{+} \stackrel{H}{\to} \circ \delta^{-}$ 



#### Hydrogen Bonds (H-bonds) between Water Molecules


H-bond is stronger if

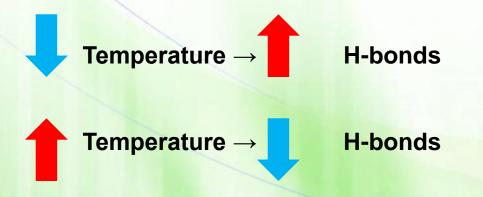
Х—Н .....А

A is O, N or F X is O, N or F

Average number of H-bond in liquid water at 10°C is 3.4 in ice crystals is 4

Number of H-bonds decrease with higher temperatures

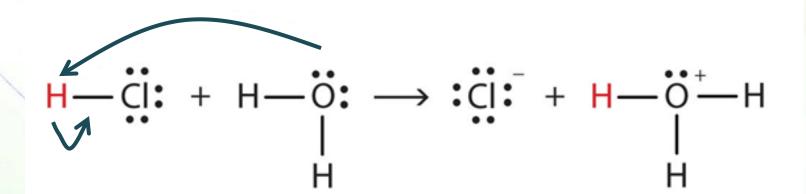





Water structure resists sudden and large temperature changes because:

High thermal conductivity thus, facilitates heat dissipation from high energy consumption areas into the body water pool.

High heat of fusion, so a large drop in temperature is needed to convert liquid water to ice.


High heat capacity and heat of vaporization; when liquid water (sweating) is converted to a gas and evaporates from the skin, we feel a cooling effect.



### Properties of water (3)



- It is reactive because it is a nucleophile.
  - A nucleophile is an electron-rich molecule that is attracted to positively-charged or electron-deficient species (electrophiles).





#### **Properties of water (4)**

 $H_2O$ 

Water molecules are ionized to become a positivelycharged hydronium ion (or proton), and a hydroxide ion:

 $H_2O \longleftarrow H_3O^{\oplus}$