What is Biochemistry?

- It is the study of chemistry in the living systems (cells & organisms such as human)
 - Studying the structure, interactions, organization, functions & the reactions between biological molecules
 - Studying the flow of energy in the cells and its transformation from one type to another (which is called bioenergetics)

• We use biochemistry in medicine in:

- Diagnosing, monitoring & understanding the molecular bases of diseases
- Designing drugs (new antibiotics, chemotherapy agents)
- Living organisms on Earth are composed mainly of 31 elements, classified into 4 tiers (groups):
 - ➤ 4 Primary elements → Carbon, Hydrogen, Oxygen & Nitrogen
 - ✓ They form 96.5% of an organism's weight (the most abundant)
 - ➤ The second group → includes Phosphorus & Sulfur
 - ✓ Less abundant than the primary ones
 - > 3rd and 4th groups -> they are called Trace elements & they are mostly metals
 - ✓ They are minor but also essential.

❖ Bonds (Covalent & Non-covalent):

- Covalent bonds → bonds that involve sharing electrons between atoms formed during chemical reactions
- They have many properties, such as:
 - Bond strength: It is the <u>amount of energy</u> that must be supplied to break a bond and it is depends & affected by the bond length and orientation
 - > Bond length: The <u>distance</u> between two nuclei
 - **Bond orientation:** Bond <u>angles</u> determining the overall geometry of molecules
- The three-dimensional structures of molecules are specified by the bond angles (orientation) and bond lengths for each covalent linkage
- Covalent bonds can be either Polar or nonlpolar:
 - Polar covalent bonds:
 - ➤ Covalent bonds in which the <u>electrons are shared unequally</u> → called dipoles
 - ➤ It is due to the **difference in electronegativity** between the atoms forming the bond → so electrons are <u>closer</u> to the <u>more electronegative</u> atom making it <u>partially negative</u>, and the <u>less electronegative</u> atom will be <u>partially positive</u>
 - \triangleright Examples: (O N), (O H), (N H) and (H not C)
 - Non-polar covalent bonds:
 - ➤ Covalent bonds in which the <u>electrons are shared equally</u> → because <u>electronegativity is</u> almost similar between the atoms forming the bond
 - **➤ Example:** (H C)

- So according to the polarity of the bonds -> the molecule can be polar or non-polar:
 - ✓ Polar molecules such as H₂O & H₂CO
 - Water molecule has 2 polar (H − O) bonds with an angel between them that doesn't equal 180° (the molecule is bent) → so they won't cancel each other pulling the molecule toward O (more electronegative atom)

- ✓ Non-polar molecules such as CO₂
- ➤ CO₂ molecule has 2 polar (H C) bonds with an angel between them equals 180° so they oppose & cancel each other

- Non-covalent bonds → no sharing of electrons → they are reversible & relatively weak, so they can be broken and reformed during physical or chemical reactions, they have many types:
 - 1) Electrostatic (ionic) interactions:
- Charge charge interactions \rightarrow similar charges = repulsion / opposite charges = attraction
- Occur between charged particles either partially or fully charged particles
- These forces are quite strong in the absence of water, and their strength depends on amount of the charge on the particle (directly) & the <u>distance</u> between the particles (inversely)

2) Hydrogen bond:

- It is considered a special type of electrostatic bonds (between charged particles)
- A Hydrogen atom is partly shared between 2 highly electronegative atoms:
 - ► H-bond donor → A highly electronegative atom with a partially positive H atom (it is stronger when the donor is N, O or F)
 - ➤ H-bond acceptor → A high electronegative atom having a partial negative charge (it is stronger when the acceptor is N, O or F)

3) Van Der Waals interactions:

- They are instant interactions → caused by the unequal distribution of electrons around an atom → because electrons are moving with time
- The strength of these interaction highly affected by distance

4) Hydrophobic interactions:

- Not true interactions

 They are the forces that cause the self-association of nonpolar compounds in an aqueous environment
- They minimize the unfavorable interactions between nonpolar groups and water (increase stability)
- Help in the formation of micelle

Non-covalent interactions have many properties such as:

- Weak and reversible interactions
 - ✓ The order of the strength of the bonds

Covalent >>>> H-bonds & ionic > Van Der Waals > Hydrophobic

✓ Although they are weak but important because the present in large numbers

- > Can be either attractive or repulsive
- They significantly contribute to the **structure**, **stability**, and **functional** competence of macromolecules in living cells

Carbon:

- H C = C + H H C = C + H H C = C + H
- It can form 4 bonds, which can be single, double or triple bonds
- Each bond is very stable → the strength of the bonds: Triple > Double > Single
- They link C atoms together in chains and rings (serve as a backbones)
- H-1C=0 H-2C-OH H-4C-OH H-4C-OH H-4C-OH H-4C-OH HO 3C - 2C O HO 0H HO 0H
- Angels between Carbon bonds contribute to the 3D structure of molecules
- In a carbon backbone, some carbon atoms rotate around a single covalent bond producing molecules of different shapes
- Carbon can form polar or nonpolar molecules due to its intermediate electronegativity
- Pure carbon is not water soluble
- When carbon forms covalent bonds with other elements (O, N) → That makes it water-soluble

❖ Water:

- Water is a polar molecule (due to the difference electronegativity between H & O and it is angular)
- Water molecules produce a network (due to H-bonding) -> making it highly cohesive
- Water is important to our bodies, because:
 - ➤ It forms about 60% of our bodies and 70-85% of the weight of a typical cell
 - It works as an excellent solvent of many substances in our body
 - ✓ Because it is a small molecule and due to Electrostatic and Hydrogen bonds → so they break and reform with other molecules and surrounding them forming the Hydration shell

- Maintain a constant cellular environment (homeostasis) & it is an essential buffer that maintain pH by acting as a medium where acids and bases release their chemical reactions
 - When ionized it becomes a **positively charged hydronium** (or proton) & a **negatively** charged hydroxide ion $H_2O + H_2O \longleftrightarrow H_3O^{\oplus} + OH^{\ominus}$
 - ✓ The equilibrium is toward forming water

- ➤ It has a **High specific heat and heat of vaporization** → requires a large amount of heat to change its temperature by a small degree → **regulating temperature**
 - ✓ When body temperature increases → sweating → water absorb heat and regulate body temperature
- As the temperature increases → breaking hydrogen bonds → less H-bonds
- As the temperature decreases → forming hydrogen bonds → more H-bonds

- Participate in many biochemical reactions
 - ✓ Water molecule is a nucleophile so it is reactive
- Nucleophile: <u>Electron-rich</u> molecule → so attract electron-deficient molecules (Electrophiles or positively-charged molecules)

