DNA sequencing

- DNA sequencing: The process of determining the exact order of nucleotides in a genome or in a DNA fragment
- We use DNA sequencing in (the importance and purpose):
 - ➤ Identification of genes and their localization
 - > Identification of protein structure and function
 - ✓ By knowing the <u>sequence of codons</u> which are translated to this protein → so we can know amino acids sequence → Knowing the structure and function of the protein
 - Identification of DNA mutations
 - ✓ By comparing the sequence of a DNA fragment with the sequence of the normal genome to know whether there are a mutation or a disease
 - > Clarify (Elucidate) Genetic variations among individuals in health and disease
 - ✓ By sequencing the genome of individuals we can know (predict) the susceptibility for a certain disease → so giving advices how to take care and we can know the best treatment.
 - > Evolutionary conservation among organisms
 - ✓ To study the evolutionary similarities & differences between different species (organisms)
- DNA sequencing of organism genome (history):
 - The first genomes to be sequenced were Viruses and prokaryotes (simple & small) → Then
 Human mitochondrial DNA
 - The first eukaryotic genome sequenced was that of yeast (Saccharomyces cerevisiae)
 - The genome of a <u>multicellular organism</u>, the <u>nematode Caenorhabditis elegans</u>
 - Determination of the base sequence in the <u>human genome</u> was initiated in 1990
 - ✓ Not completed yet → some regions of the Y chromosome remains
- Different organisms differ in their genomes (sequence & size), usually more complex organisms have more complex (larger) genomes → but it is not necessary

DNA synthesis/elongation (Replication)

- - (Deoxyribo) -> the sugar is a pentose missing the OH on the 2nd carbon
 - C-5 → is attached to 3 phosphate groups (triphosphate)
- Replication done by forming phosphodiester bond between C-3 (3' carbon) which has
 OH group of a nucleotide with C-5 (5' carbon) of the next nucleotide
 - ➤ We get the energy for this reaction by the cleavage and the release of 2 phosphates (as a pyrophosphate molecule)

The basic method of DNA sequencing

- It is the most popular & based on premature termination of DNA synthesis by dideoxyribonucleotides
 - Dideoxyribonucleotides Deoxy- on carbons number 2 & 3 (has 2 OH groups are reduced)
 - When a dideoxyribonucleotide is added to DNA \rightarrow we can't add any nucleotide after it (because it don't have OH on carbon 3 \rightarrow no phosphodiester bond with the next nucleotide)

The Mechanism of this method:

- DNA polymerase starts synthesis (initiated) by a primer (can't start de novo) that has been labeled with a radioisotope (such as radioactive phosphorus) \rightarrow to sequence 1 strand of the DNA fragment
- We put the DNA fragment of interest in 4 tubes and we put the labeled primer, DNA polymerase, the 4 deoxynucleotides (dA, dC, dG, dT) & a dideoxynucleotide in a low concentration
 - The first tube contains ddA, the second one ddC, the 3rd ddG, the 4th ddT having 4 reactions
- DNA polymerase + dATP, dGTP, dCTP, dTTP ddGTP in low concentration TAGCTGACTCAG3 TAGCTGACTCAGTTCTTGATAACCC<mark>G</mark>3'

3' ATCGACTGAGTCAAGAACTATTGGGCTTAA

TAGCTGACTC3'

- DNA polymerase starts synthesizing using deoxynucleotides mainly and on some fragments the dideoxynucleotide can be used terminating the synthesis of these strands forming many newly synthesized strands with different lengths
 - > So, labeled DNA molecules are generated, each terminated by the dideoxynucleotide
- We put the resulted fragments in gel electrophoresis separating them according to size and then detected by **X-ray** film \rightarrow so now we can know the sequence of the newly synthesized fragment
 - \triangleright The sequence of the newly synthesized strand \rightarrow corresponds the order of the resulted fragments (from the smallest to the largest)
 - ➤ The sequence of the original strand is → complementary and antiparallel to the new strand

Note:

- Some time there could some strands on the same level (the same length), why?
 - ➤ we have 2 homologous chromosomes → the individual has 2 forms of the gene \rightarrow **heterozygous**, it can be:
 - ✓ Polymorphism (occurs more than 1% of the population)
 - Mutation (occurs in less than 1% of the population)
- We can know if this variation causes a disease by:
 - > Comparing the sequence with the sequence of an individual that has the **disease** → if they both has this band → Carrier of the disease
 - > If an individual is homozygous we can compare his sequence with the disease sequence if they have the same band \rightarrow this individual is homozygous for the disease \rightarrow affected by the disease

Fluorescence-based DNA sequencing

- In this method \rightarrow the 4 deoxynucleotides + the 4 dideoxynucleotides are included in the same reaction
- No radioactive labeling -> but ddNTP are labeled with fluorescent tag
 - > We don't use Radioactivity because it could produce mutations, so it is harmful
 - Using fluorescence makes it less laborious
- So the tube will have a template, primer, DNA polymerase, dNTPs & fluorescent ddNTPs
 - Each ddNTP has a tag with certain color (signal)
- So instead of having them separated in 4 lanes, we will have them in one lane and as they migrate, we have a sensor that reads the fluorescence and transforms the results in the shape of peaks, then it reads the peak and translates it into a letter

What if we had 2 peaks in the same locations?

- ➤ Heterozygous person → Polymorphism or mutation
 - ✓ If the 2 peaks have different lengths → the longer wave is more present

Next-generation sequencing

- The fastest method
- It is Done by:
 - Fragmenting the cellular DNA randomly and adding a DNA adapter (with a known sequence) to the end of each fragment
 - ✓ The formed fragment can have <u>overlap</u> between their sequences
 - ➤ We attach these fragments to a to a solid surface and amplified like PCR forming millions of clusters
 - ➤ Adding primers that anneal to the adapter → We add the same primer to all clusters because it is complementary to the adapter not the fragment itself
 - Then DNA polymerase start synthesizing the new strand using modified nucleotides (with terminating ends) as a substrate:

- ✓ When a nucleotide is added (incorporated) → no new nucleotides can be added until
 the incorporated on is chemically modified (Activated) → now a new nucleotide can
 then be added to it
- > The cycle is repeated until sequencing the whole fragment
- For example the sequence of the newly synthesized of the:

1st cluster: TAAGT
 2nd cluster: GCTGA
 3rd cluster: CTTAG
 4th cluster: AGCCG

- The solid surface contain millions of clusters → so after sequencing each cluster we use bioinformatics and a computer program to combine all information we have
 - ➤ The fragments overlap → so this program can give us the sequence of the original strand after analyzing the result (information)

Polymerase Chain Reaction

- Challenges in study DNA in research and medicine:
 - Its hard to study **genetic variation** (such as STR, VNTR, SNPs and mutations)
 - Hard to deal with minute amounts of genetic material (such as that of dinosaurs and early human)
 - > Identification of organisms (such as infectious agents)
- Polymerase chain reaction (PCR): A reactions allows the DNA from a selected region of a genome to be amplified a billionfold and effectively purifying this DNA away from the remainder of the genome
 - It is extremely sensitive; it can detect a single DNA molecule in a sample
 - It is really fast it takes only a few hours, it is also specific so it selects a specific region and amplify it
 - It's just like the cloning but it is faster, more selective and it is a biochemical enzymatic reaction
 - \rightarrow It is a chain (consecutive) reaction \rightarrow repeated several times

Components of PCR reaction

- > The DNA template (can be circular or linear but the resulted DNA molecules will be only linear)
- A pair of primers
 - ✓ The point where DNA polymerase start amplifying (initiating polymerase activity).
 - √ 15-25 nucleotides-long primers → to surround (limit) the target sequence
 - ✓ They are called primer 1 (forward primer) and primer 2 (reverse primer)
- > All four deoxyribonucleoside triphosphates (enzyme substrates dATP, dGTP, dCTP, dTTP)
- ➤ A heat-stable DNA polymerase

Notes:

- ➤ We use **DNA primers** instead of RNA primer → because they are **more stable**
- The 2 primers to surround the region we need \rightarrow each on at each end of the region

The PCR steps

- > Denaturation (at 95°C): DNA is denatured into single- stranded molecules
- Reannealing (50°C to 70°C): the primers anneal to the DNA
- Polymerization or DNA synthesis (at 72°C): optimal for the polymerase
- These steps are repeated many times (about 25-30 times) → cycles
- Annealing temperature depends on the primer itself (its length, GC content,... etc)

The DNA polymerase

- Ordinary human Polymerases can't revive in these high temperatures they would be denatured being nonfunctional → so a suitably heat-stable DNA polymerases have been obtained from microorganisms whose natural habitat is hot springs
 - For example, the widely used Taq DNA polymerase is obtained from a thermophilic bacterium, Thermus aquaticus, and is thermostable up to 95°C
- In the first 2 cycles the process of synthesizing DNA contains long extended fragments
- In the third cycle → we have the DNA size (fragment) that we want → these fragments are now amplified to many copies

PCR cycles

- 20-30 cycles of reaction are required for DNA amplification
 - > The products of each cycle serving as the DNA templates for the next-hence the term polymerase chain reaction
- Every cycle doubles the amount of DNA
- After 30 cycles, there will be over 250 million short products derived from each starting molecule
- These DNA fragments can be easily visualized as a <u>discrete band of a specific size</u> by **agarose gel** electrophoresis (1 band containing a huge number of identical DNA fragments)
- What does determine the specificity of DNA amplification?
 - The specificity of amplification depends on the <u>specificity of the primers</u> to not recognize and bind to sequences other than the intended target DNA sequences
- How can you prevent the non-specific annealing?
 - > By using the **optimal temperature** for the reaction

Genotyping

- ✓ At low temperature → less specific annealing because there could be an imperfect hybridization
- The higher the temperature the more specific the annealing
- ✓ At Very high temperature → no H-bonding between strands & no annealing
- We can use a mouse primers to amplify human genes \rightarrow due to homology (similarities) in the sequence

Uses of PCR

- **Molecular Fingerprint** Detection of mutations
 - Prenatal diagnosis
- Genetic Matching Cloning

- Mutagenesis
- Molecular archeology
- **Detection & classification of organisms**

Most DNA

Least DNA

8.172

6.172

Real-time Quantitative PCR (qPCR)

- Here we utilize SYBR green which binds to double-stranded DNA and fluoresces only when bound (**No binding** \rightarrow **no fluorescence**)
- qPCR: A way of relative quantitation of amount of DNA in a sample is by amplifying it in the <u>presence of SYBR green</u>
- So we use a specific primer for a specific sequence (such as viral DNA)
 - \triangleright If this sequence is not present \rightarrow no binding \rightarrow no signal
- At early cycles there is no signal detected because the amount of DNA is very low for the instrument to detect the fluorescence that is emitted from SYBR green
 - ➤ The greater the initial concentration → the greater amplification over cycles \rightarrow we will reach the limit at which the instrument starts detecting signals earlier
 - > The more the DNA (initial concentration) the earlier a signal will be detected
- Threshold cycle (Ct): The number of the cycle in which a signal is detected, measuring the DNA amount
- So we can use qPCR to know the viral and bacterial load
- How can we be sure that this process is specific (Amplifying the needed fragment)?
 - By melting curve analysis

- Melting curve analysis: Depends on the melting point of the fragments (where 50% of the DNA is denatured) → and there will be a peak of fluorescence observed
 - > So we raise the temperature after the end of the reaction (qPCR)
 - ✓ If we have a **single peak** → there are a single type of fragments → so only the needed region (sequence) is amplified → **specific**
 - \checkmark If we have a more than 1 peak \rightarrow there are a many types of fragments \rightarrow not specific
- Many peaks indicates different melting points -> different fragments (they differ mainly in the AT and CG pairs amount)

Taqman qPCR

- It is more specific, more sensitive, more reproducible & multiplexing
- It uses a primer, template, DNA polymerase, Deoxyribonucleotides and probes
 - ➤ This probe is specific to a **specific region to be amplified** → making this reaction **more specific**
 - > The probe is bound to a reporter and a quencher
 - ✓ The reporter emits signal only if it is far from the quencher
- DNA polymerase used here has an exonuclease activity
- As the reaction proceeds → DNA polymerase is synthesizing → when it reaches the frobe, it will start cleaving it → so the reporter is far from the quencher → emitting signal
 - ➤ No signal → no cleavage → the needed fragment is **not amplified**
- If we repeated the reaction several times \rightarrow it will give the same results \rightarrow more reproducible
- We can amplify many regions of the same sample at the same time
 by using the different probes specific to each region & attached to
 different reporters giving different signals -> multiplexing

Analysis of gene expression and RNA levels

- Basic methods: Northern blotting, in situ hybridization
- Advanced methods: real-time PCR, DNA microarray → these deal with DNA
- Very advanced method: RNA-seq
- To use the advanced methods on mRNA we must convert mRNA into cDNA by the enzyme reverse transcriptase:
 - > We use a poly-T primer that binds to the Poly-A tail of the mRNA
 - ➤ After the synthesis of the first strand of cDNA → the mRNA is degraded and the 2nd strand is synthesized
- Now we can use real-time qPCR & Taqman PCR:
 - So, amount of mRNA is reflected by the amount of cDNA
 - ✓ The more cDNA detected = the more mRNA \rightarrow so 1 mRNA \rightarrow 1 cDNA ...
- We can use qPCR with utilizing SYPR green on cDNA → so the more cDNA (in the initial sample) the
 earlier signal is detected → more mRNA → this gene is highly expressed
- To be sure that the sample is properly collected we need a control → and this control is a housekeeping gene

- Housekeeping genes: Genes that are expressed in a constant rate (unaltered expression) in all tissues & cells (such as actin & tubulin)
- When taking 2 samples of a certain gene we also examine the housekeeping gene
 - If both samples have the same expression for the house keeping gene so now we can study the gene of interest
 - ➤ If they don't have the same expression → the sample is not correctly taken
- In the next picture → the gene in the purple sample is expressed more than it in the pink sample

Gene of interest

The detection of SARS-CO-2:

- \triangleright We collect a sample \rightarrow by a **nasopharyngeal swab** \rightarrow and put it in a buffer solution
- > We extract the RNA of 3 genes specific for the virus (E-gene, RdRp-gene, N-gene)
- ➤ RNA is converted into cDNA → which will be **amplified**
- To be sure the sample is properly collected we also amplify a human gene (IC = internal control)

- The sample on the left → correctly collected → Positive to corona virus
- On the middle → correctly collected → Negative
- On the right

 Not-correctly collected

The science of -omics

- **Genomics** \rightarrow the science studying the whole genome in the cell
- Transcriptomics → the science studying the whole transcripts (RNAs) in the cell
- Proteomics

 the science studying the whole proteins in the cell
- Metabolomics

 the science studying the whole metabolites in the cell

DNA microarrays

- DNA microarrays are solid surfaces (glass microscope slides or chips) spotted with up to tens of thousands of DNA fragments in an area the size of a fingernail
 - > The exact sequence and position of every DNA fragment on the array is known
- We use it to study the transcriptome

 allowing us to study thousands of gene at the same time
- Each array or spot contains a multiple identical strands of DNA (probes) that are unique for each spot → Each spot represents a gene that we know

- To study the expression of the genes in a cell:
 - > All mRNA from the cells are extracted (isolated) and converted to cDNA
 - > The cDNA is labeled with a radioactive phosphorus
 - We add the cDNA sample to the microarray:
 - \checkmark Each cDNA will bind to the complementary probe (specific to it) \rightarrow emitting a signal
 - ✓ More binding → stronger signal
 - No signal → no expression of this gene
 - Strong signal → high expression
 - Little signal → low expression
- So, Microarray tells us about the expression of all genes at the same time

Comparative expression

- We can use the microarray to compare gene expression between different samples (such as a normal cell with a cancer cell)
- It has the same mechanism of ordinary microarray but we don't use radioactive label, instead we use a
 fluorescent tag with a certain color for each sample
- For example, if we compared a normal cell with a cancer cell:
 - > We label the cDNA from the normal cell with a green color
 - > The cDNA from the cancer cell with red color
 - > We are both samples to the same microarray > the computer will analyze the colors
 - ➤ If the spot has:
 - ✓ Red color → this gene (of the spot) is expressed more in the cancer cell
 - So it can be a cancerous gene
 - ✓ Green color → this gene (of the spot) is expressed more in the normal cell
 - So it can be a tumor suppressor gene
 - ✓ Yellow color → expressed in both cell at the same rate
 - ✓ White or black → no expression on either cell

- Normally we compare between normal with a large number of cancer samples, example:
 Here we have 3 samples → each 1 of them is compared to the normal:
 - So, green means that it is more expressed in normal cell BUT less expression (down regulation) in this sample of cancer cells
 - Red means that this gene is highly expressed (up regulation) in this sample
 - Yellow -> expressed as much as the normal cells
 - ➤ Black or white → not expressed in either cell
- These samples are combined using bioinformatics:
 - When we look to these samples → we notice that the expression of genes 2, 4 & 9 doesn't differ between the samples → so we eliminate them

- ➤ We are interested in the other genes that have different rate of expression between samples (for example: gene 3 in sample 1 is down regulated but it is up regulated in sample 2)
- > By comparing the samples we notice that samples 1 & 3 are similar
- We can benefit from that → by comparing large number of patient to know about the simulates between their conditions
 - Patients represented in region number 1 have:
 - ✓ Down regulation of B genes
 - ✓ Up regulation of A genes
- Doctors concluded that these patients → give poor therapy outcomes

- ✓ Down regulation of A genes
- ✓ Up regulation of B genes
- Doctors concluded that these patients -> give good therapy outcomes
- So, we can use gene expression to predict if the patient have good or poor therapy outcomes → to know how to deal with him

RNA-seq (RNA sequencing)

- Cellular RNA is reverse transcribed to cDNAs, which are subjected to next-generation sequencing → Knowing the sequence of RNA
- The relative amount (level) of each cDNA (mRNA) is indicated by the frequency at which its sequence is represented in the total number of sequences read
- RNA-seq can be used to:
 - > Characterize novel transcripts
 - Identify splicing variants
 - > Profile the expression levels of all transcripts
 - ✓ So this how we knew that 75% of human genome is transcribed
- Microarrays are limited to detect transcripts corresponding to known genomic sequences (because
 we use certain probes to identify them)

