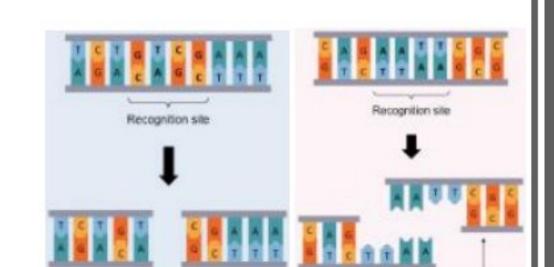
#### Restriction endonucleases

- **Endonucleases Tendo** = within molecule / **nucleases** = enzyme that degrade nucleic acid
- Restriction endonucleases: Bacterial enzymes that recognize and cut (break) the phosphodiester bond between nucleotides at a restriction site generating restriction fragments
- Restriction fragments Restriction endonuclease

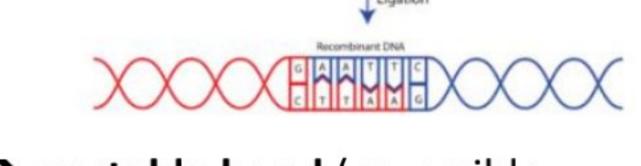
Restriction site

- Restriction site: A specific sequences range (4- to 8-bp) where Restriction endonucleases cut, and they are palindromic sequences
- Palindromic sequence: A sequence read the same from left to right as they do from right to left (the same sequence on the both strands)
- They are called **restriction**  $\rightarrow$  because bacteria use them to **restrict the growth** of viruses attack them (bacteriophages) by cutting the DNA of the virus
- Examples on Restriction endonucleases:
  - ➤ EcoRI, its restrictions site → GAA\*TTC

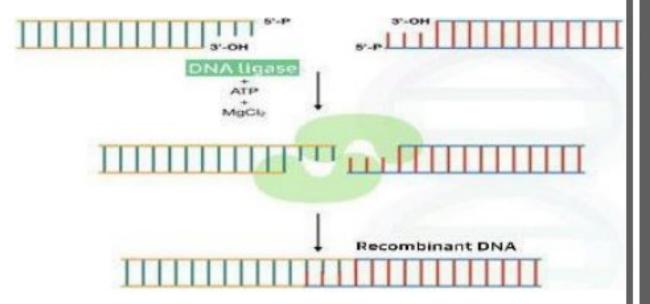
CTT\*AAG


Smal, its restrictions site

➤ HindIII, its restrictions site → AAG\*CTT


TTC\*GAA

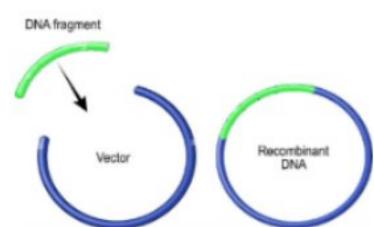
→ CCC\*GGG GGG\*CCC


- Restriction endonucleases cut DNA in 2 ways:
  - ➤ Blunt → Cut in the same position on both strands giving blunt-ended fragments
  - > Staggered (off-center) -> Cut in different positions on each strand generating sticky or cohesive ends

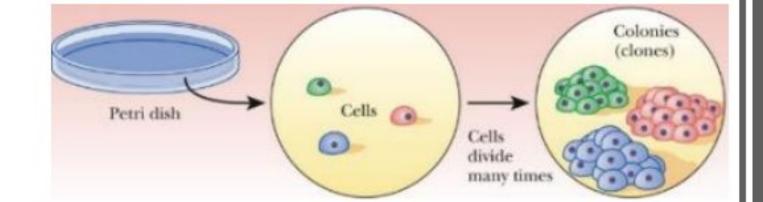


- Sticky ends have **single-stranded overhangs** at the end  $\rightarrow$  which can form **H-bonds** with other **complementary sequences** of nucleotides
- If these sequences are from **different sources**  $\rightarrow$  they are called recombinant DNA

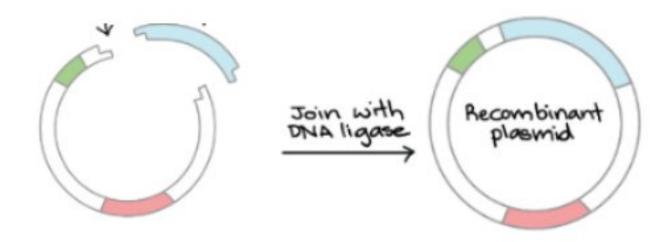



- The hydrogen bonds are non-covalent bonds means that they are → unstable bond (reversible bonds break & reform) -> so, the 2 sticky ends can be released or disassociated from each other
- **DNA ligase**  $\rightarrow$  an **ATP-dependent enzyme** that catalyzes the formation of phosphodiester bonds between the 3'-hydroxyl group of one strand and the 5'-phosphate end of another strand

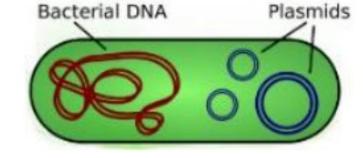



### DNA cloning

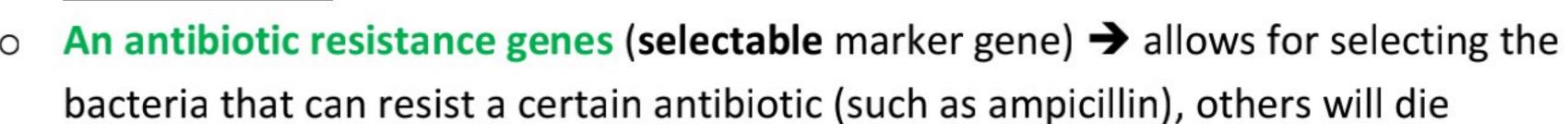
- Cloning means -> making several copies of one thing
- **DNA cloning** is a technique that <u>allows for</u>:
  - Amplifying a DNA segment into many, many copies in a biological system.
  - Expressing a gene inside a biological system
    - ✓ (such as: yeast, bacteria, cultured human cells or even the human body as a whole).
- **DNA cloning** usually involves:
  - > The formation of a recombinant DNA
  - ➤ Insertion into the cell (such as bacteria) → it divides, grows and proliferates → amplifying DNA

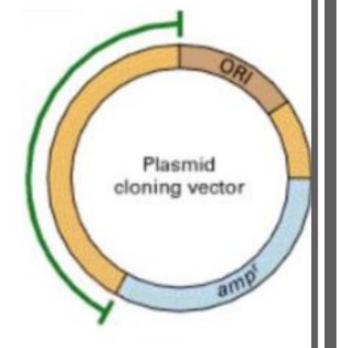

- Recombinant DNA: It is DNA molecule which made up of 2 or more <u>different DNA from different</u> sources, composed of:
  - A vector → a carrier of the gene or the DNA segment of interest (usually a bacterial plasmid)
  - 2) A gene (that encodes a protein or a non-coding RNA) using restriction endonucleases



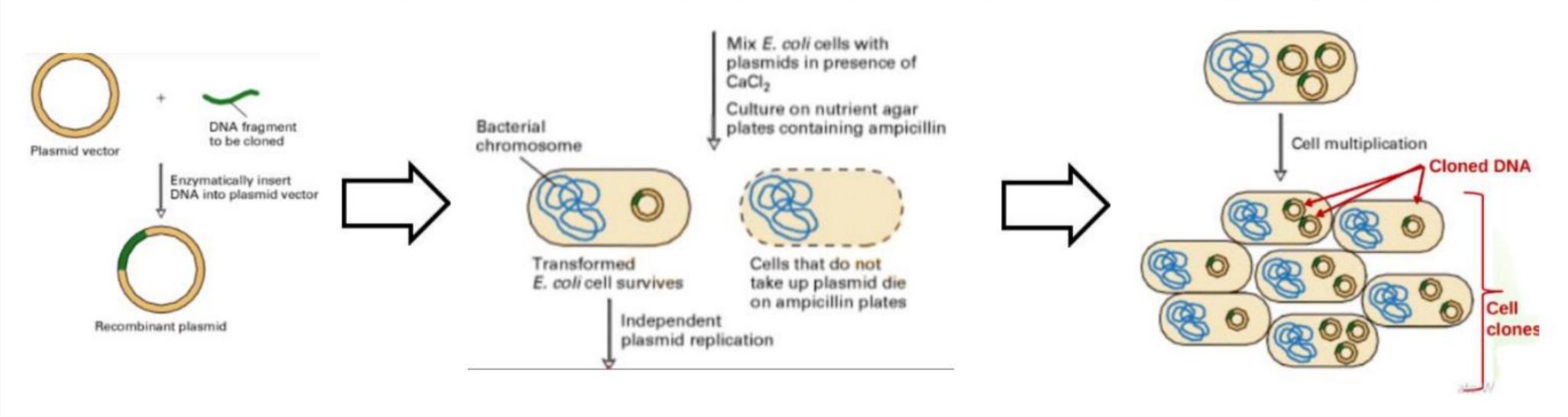

- Clones: They are genetically identical populations (copies) of organisms, cells, viruses, or DNA
- All the members of the clone are derived from a single one (cell, virus, or DNA molecule) → so a single cell generates the whole identical population




- How do we clone a DNA molecule?
  - ➤ We insert the DNA fragment of interest into the DNA carrier (vector), using **Endonuclease** & <u>ligase</u> enzymes → forming a recombinant DNA molecule




- ➤ This procedure is known as → recombinant DNA technology, which is part of genetic engineering
- Bacterial plasmid: natural bacterial circular DNA that is not a part of the main circular DNA chromosome, and it can replicate independently of the main bacterial genome, so:
  - A bacteria can have many plasmid & can be transferred from one bacterial cell to another



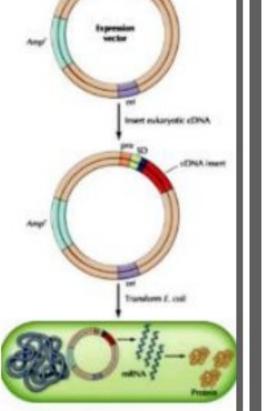

- They can be used as **vectors** for **cloning** (cloning vectors) or **expression** (expression vectors)
- Features of plasmid cloning vectors:
- Plasmid cloning vectors <u>must have</u> the following three components:
  - Their own origin of replication (OriC) → that allows them to <u>replicate</u> independently of the bacterial chromosome





- A restriction site → that allows for insertion of the DNA segment of interest into the plasmid
- Both DNA fragments to be cloned and vector → are cut by the same restriction endonuclease that makes DNA fragments with same sticky-ends hybridize (annealing between the complementary sequences) to each other, when mixed → then DNA ligase is added to close the plasmid → we have recombinant DNA or plasmid → which is returned to bacteria → then cloning (amplifying)




# Overview of gene expression

- In order to express gene we need:
  - Promoter (on DNA)→ which is the binding site of RNA polymerases, (transcription initiation site)
  - Termination sequence (on DNA) 

    to stop transcription producing mRNA
  - Translation start site (on mRNA) which is AUG
  - Translation stop codon (on mRNA) → (UGA, UAG, UAA)
- The product of this process is a polypeptide chain that folds into its 3-dimintional structure



- The vector we use to express a specific gene (bacteria produce human protein)
- Expression vectors contain additional sequences:
  - Promoter sequences upstream of gene to be inserted → to initiation transcription
  - Ribosomal binding sequences (ShineDalgarno [SD] sequences in bacteria) → to initiate translation
  - A transcription termination sequence (encodes the stop codon) → to stop expression



Transcription stop

(terminator)

ranslation

stop

Gene

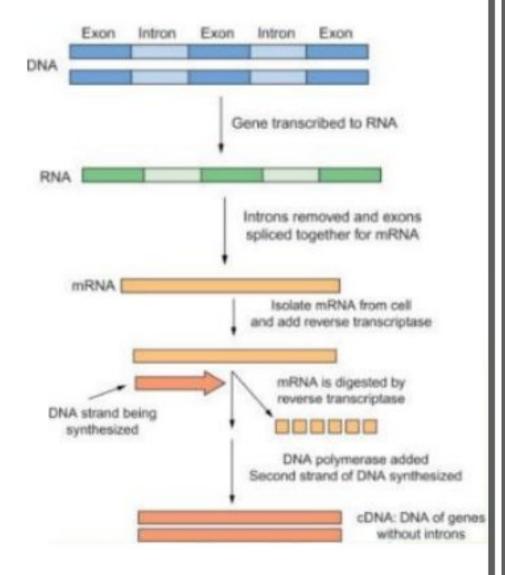
Translation (ribosomes)

hine-Dalgarno Transcription (RNA polymerase)

Transcription start

(promoter)

Translation'


protein

Examples of human proteins that can be produced inside bacteria cell: insulin, growth hormone,
 plasminogen activator, erythropoietin

- This technique is Gel electrophoresis for proteins are separated according the size:
  - ▶ Bacteria with no vector → there is no expression of the proteins.
  - ➤ Bacteria with vector → there is gene expression of the protein on interest
- How do we select for human mRNA?
- When we comes to express human gene in bacteria, there are two challenges, and two solutions for each one:

# 1) The "intronic" challenge

- Genes contain introns (<u>non-coding</u> sequences), can clone DNA molecule (gene) without introns by:
  - o The "reverse" solution → by using a reverse transcriptase to make a cDNA from the mRNA molecule then adding DNA polymerase to make a double stranded DNA without introns then it will be inserted in the plasmid
- Reverse transcriptase: Enzyme generates DNA from RNA (use RNA as a template)



#### 2) The "many types of RNA" challenge

- Inside human cells we have many types of RNA molecules → and we need only mRNA
  - o So, we use reverse transcriptase to produce cDNA
  - Reverse transcriptase requires a <u>primer</u> (a short nucleotide sequence to start replication) and we use a <u>poly-T primer</u> binds to the mRNA (which <u>contains poly-A tail</u>) then reverse transcriptase start make a copy of cDNA

3'AAAAA 3'

mRNA

Incubate with reverse transcriptase to synthesize cDNA strand

3'
cDNA

o The only type of RNA having Poly-A tail is mRNA (so it will be selected from others)

# Challenges of protein expression in bacteria

- Proteins that produced inside bacteria by expression vector will face these challenges:
  - No <u>internal</u> disulfide bonds (covalent bond that provide the stability for the proteins in eukaryotes such as disulfide bonds between the heavy & light chains of antibodies)
  - o No post-translational modification such as glycosylation (adding sugars)
  - o Protein misfolding → the 3-dimensional structure is not formed properly inside bacteria because bacteria lacks modifier proteins (such as chaperones in human cells)
  - Protein degradation → degraded by the bacteria (because it is not recognized as a normal bacterial protein)
- The Solution of this challenge is:
  - > use a eukaryotic system such as yeast (Mono-cellular eukaryotic cell)

# Protein tagging and creation of protein hybrids

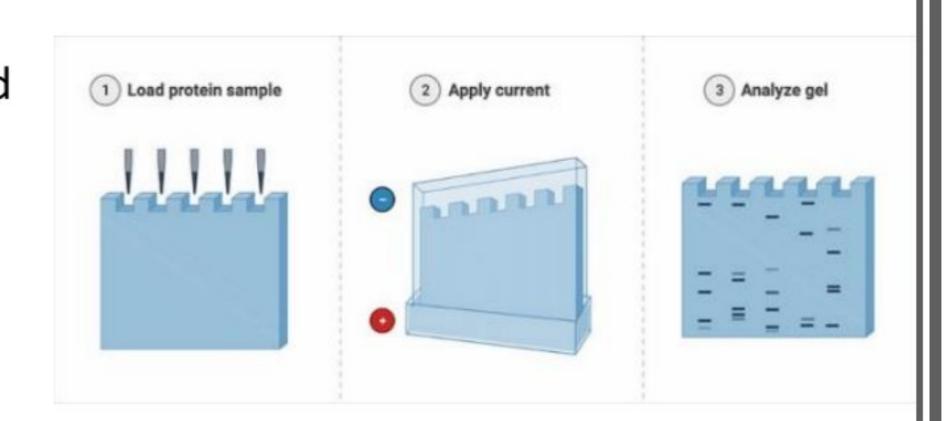
- Tagging is adding a tag or label  $\rightarrow$  so, these tags allow easy protein purification & detection
- A <u>protein-encoding gene</u> is cloned in a special <u>vector containing a <u>tag gene</u> → which will be expressed with the gene → encodes into amino acids (tags) <u>present on the produced protein</u> (as apart of the recombinant protein)
  </u>

# Post-protein tagging

• How we can isolate the protein that is tagged from other proteins?

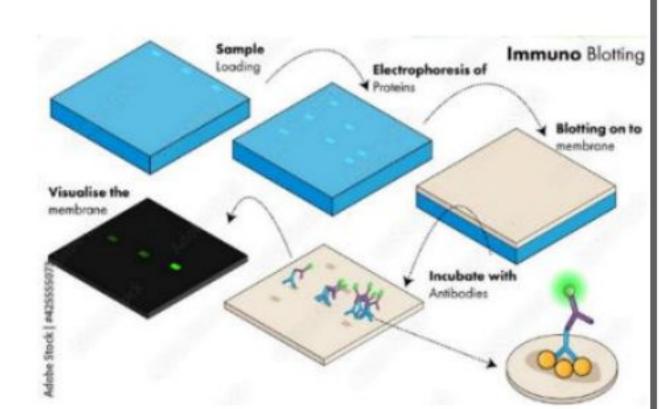
# 1) Affinity chromatography

- We have a column (cylinder) that has a matrix contains specific ligands (that can bind only to the proteins of interest)
- So, proteins that have the affinity to these ligands will bind, while others will pass out from the column
- Finally, we can isolate the protein of interest from the column


# Bind Wash Elute Target protein Other components of complex preotein mixture Salt Ligand Affinity resin

#### 2) Immunoprecipitation

- Antibodies will bind to proteins highly specific
- We put a collection of proteins in tubes that contain resin and beads with antibodies on their surface → which binds to the proteins of interest very specifically
- These beads are heavy -> so they precipitate (go all the way down)
- Then proteins of interest will be isolated from beads and other proteins

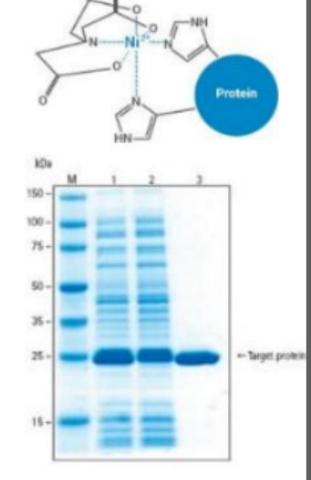

#### 3) Gel electrophoresis (SDS-PAGE)

- Separating proteins according their size
- We use special gel → put our sample into wells → applied
  an electrical current → proteins will be separated
  according their size as bands → each band contain many
  copies of different protein with the same size



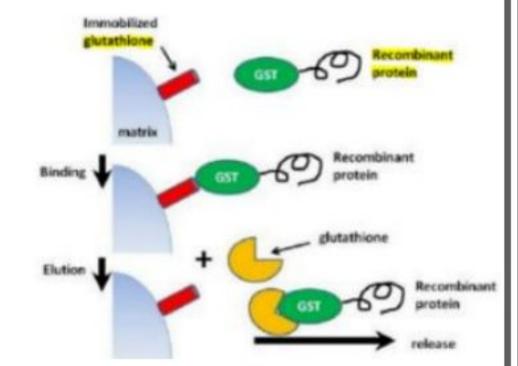
# 4) Immunoblotting

- Like southern blotting
- Proteins are separated through a gel according to size → and then they
  are transferred to a membrane
- Then adding antibodies that have labels attached to them
- Antibodies binds specifically to proteins giving a signal we can detect




# Major protein tags

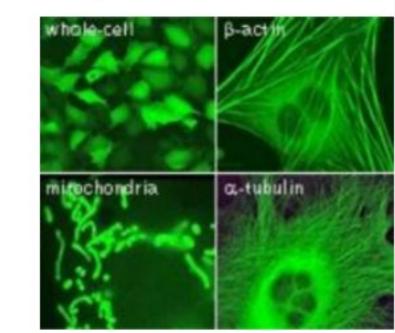
 There are different types of tags we can use with different purposes: **Detection:** only seeing the protein (detecting it) **Purification:** extracting the protein from a sample contains other molecules


### Poly-HIS:

- ✓ a small tag composed of 6 residues of an amino acid known as histidine (H)
- ✓ Tagged proteins can be detected by Antibodies (specific to the 6 histidine residues)
- ✓ Can be purified by Affinity chromatography using breads with bound nickel (or imidazole) on their surface → Ni binds to the 6 H residues and so only the tagged protein will be purified
- ✓ So, we clone the gene in the bacterial cell → then it will be expressed producing proteins which we purify & analyze them by gel electrophoresis showing that it is highly expressed (due to cloning)

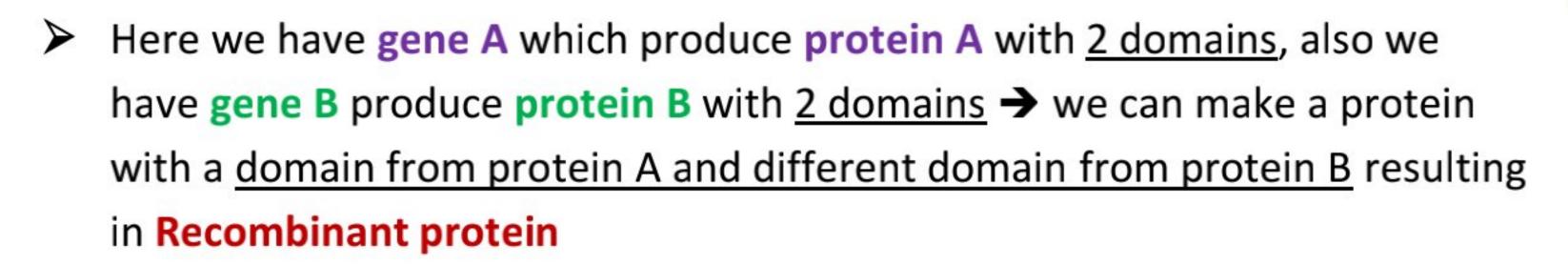


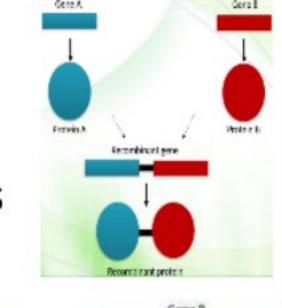
# GST (Glutathione S transferase)

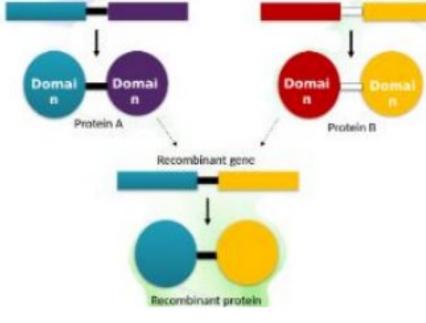

- ✓ composed of 218 residues of an amino acids
- ✓ Tagged proteins can be detected by Antibodies
- ✓ Can be purified by Affinity chromatography using breads with bound Glutathione (substrate of GST) on their surface → recombinant proteins bind to glutathione → then it can be released



#### GFP (Green Fluorescent proteins)


- ✓ It is a protein produced by **jellyfish** allows for protein detection (<u>natural florescence</u>) rather than for purification purposes
- ✓ composed of 220 residues of an amino acids
- ✓ Tagged proteins can be detected by Antibodies or Fluorescence
- ✓ No purification
- ✓ Proteins tagged by GFP will fluoresce → so we can know where the protein goes inside the cell and also can in the organism (such as the stem of the plant, mouse)
- ✓ GFP can be linked to different cell proteins such as actin/tubulin.

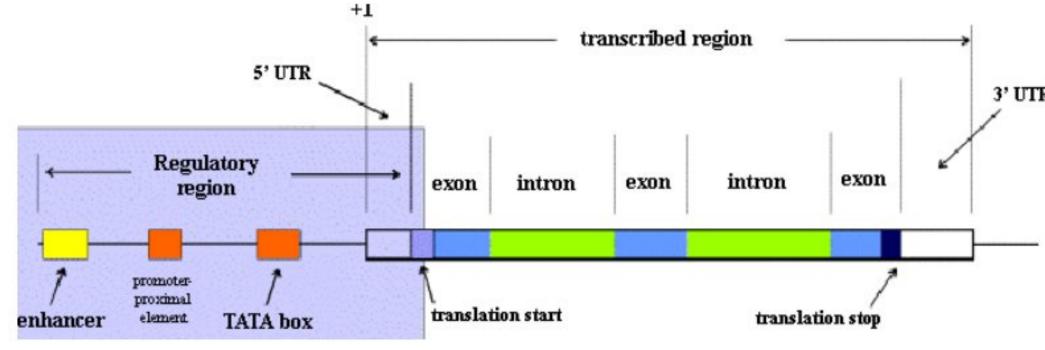

| Name                             | Amino acids     | Detection                | Purification      |
|----------------------------------|-----------------|--------------------------|-------------------|
| FLAG                             | DYKDDDDK        | antibody                 | FLAG peptide      |
| Green fluorescent proteins (GFP) | ~220 aa protein | antibody or fluorescence | None              |
| Glutathione S transferase (GST)  | 218 aa protein  | antibody                 | glutathione       |
| НА                               | YPYDVPDYA       | antibody                 | HA peptide        |
| Poly-His                         | нннннн          | antibody                 | nickel, imidazole |
| Мус                              | EQKLISEED       | antibody                 | Myc peptide       |
| V5                               | GKPIPNPLLGLDST  | antibody                 | V5 peptide        |




# Production of a recombinant protein

- Recombinant protein: Protein produced from different domains of proteins using genetic engineering
- Protein domain: A compact region (part) of the protein which has a defined 3D-structure and function
  - ✓ A domain is a self-stabilizing region can fold independently from the other parts, and so it can function probably if it is disconnected from the rest of the protein
  - ✓ A protein can have several domains which determine its structure and function.
  - ➤ Each protein produced from its gene → if these two genes expressed all together at the same time → being transcribed together into a single mRNA → being translated as a single unit forming the recombinant protein



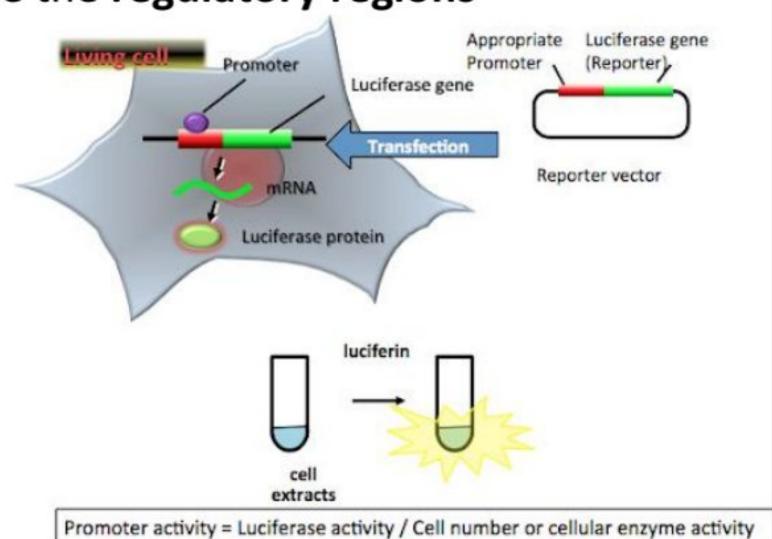





# Analysis of transcriptional regulatory sequences

- A eukaryotic gene Contains:
  - <u>Transcribed region</u> → consist of transcriptional initiation site (+1 site), exons and introns
  - Regulatory region (non-coding sequences): sequences that regulate the gene activity, either
    positive regulation or negative regulation → consist of the promoter region (such as TATA box),

promoter proximal elements (like operon sequences), enhancers (positively regulate) & silencers (negatively regulate)




# Firefly luciferase

• Luciferin: A molecule present in the firefly body which make them <u>fluoresce</u> (emitting light) at night when it converted into Oxyluciferin by Luciferase enzyme



- Luciferase reporter assay:
  - ➤ We use this technique (the purpose) → to study the <u>activity of a gene</u> at certain conditions or elucidate (explain) the <u>function of certain regions of the promoter</u>
- Reporter gene: Gene used to know the <u>importance of a certain region</u> (regulatory) under certain conditions in regulating gene expression → examples: Luciferase gene
  - The only sequences present upstream to the reporter gene are the regulatory regions
- To measure the activity of the regulatory elements of any gene, we extract the <u>regulatory region</u> of this gene and place it in the plasmid <u>upstream to the reporter gene</u> (Luciferase gene)
- The plasmid is transfected (inserted) into the cell and then the level of luciferase (not the original gene) expression is measured and analyzed



- We analyze the level of luciferase as the following:
  - If the gene of interest should be highly expressed → more activation by the regulatory elements
    → luciferase gene would be highly expressed → producing more luciferase enzyme → converting
    more luciferin molecules into Oxyluciferin → producing more stronger color (the report/signal)
- We study regulation of the gene of interest → by measuring the <u>amount of light</u> produced under certain conditions, such as:
  - ➤ Activation (+ regualtion) → more expression → more light
  - ➤ Inhibition (- regualtion) → less expression → less light
- The complete promoter contain repressor, activator and the core regions, When there is:
- o No promoter → almost no expression of the luciferase → very little signal (due to the <u>leakage</u> of expression or just a background color) → Negative control No promoter (negative control)
- Any good promoter → The maximum expression of luciferase → maximum signal (light) → Positive control
- o The complete promoter of the gene of interest → some expression of luciferase → some signal
- o The promoter of the gene of interest with deleted regions:
- ✓ Remove a repressor region → removing a negatively regulating region → increasing the expression of luciferase gene → more the signal → Positive control
  - More removing → more increasing in the expression
- ✓ Remove an activator region → removing a positively regulating region → decreasing (drop) the expression of luciferase gene
   → less the signal → Negative control
  - More removing → more decreasing (drop) in the expression
- ✓ Remove the core promoter → almost no expression → Negative control

# Protein-protein interaction

 Proteins interact with each others in order to produce an effect on cells, different domains in the same protein can interact with different proteins

# (Co)-Immunoprecipitation:

- Antibody molecules that target a <u>specific protein</u> are conjugated to special beads
- A mixture of cell proteins are added to the beads → only the <u>protein of interest</u> & other <u>proteins</u>
   bound to it will precipitate (co-precipitated), and the other proteins that are not bound will be removed

 We can use immunoblotting (called western blot) or SDS-page → to study our sample containing the protein of interest & other protein that bound to it

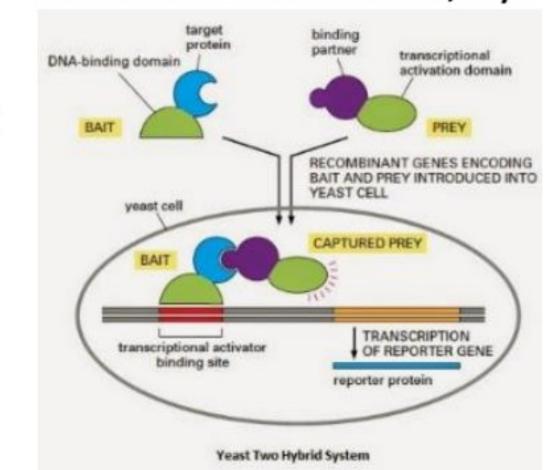
#### ✓ NOTE:

- Southern blot → for DNA
   Northern blot → for RNA
   Western blot → for proteins
- What is a DNA library?
- It is a library can be created for DNA fragments (just like book libraries)
- We can have clones of bacteria each containing a specific piece of DNA → we can save these clones in the freezer and take whichever clone we want to study
- There are 2 types of DNA libraries:

### **Genomic DNA library**

- The whole genome of a cell or a group of cells
- The whole genome contains (coding & noncoding regions): introns, exons, enhancers, silencers ...
- So, each recombinant DNA (plasmid) contains fragments from the whole genome (everything coding and non-coding)

# **cDNA** library

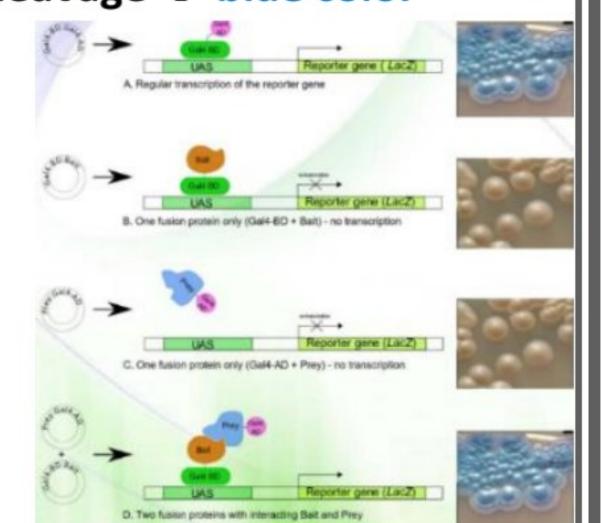

- Contains only cDNA (made from mRNA using reverse transcriptase enzyme
- cDNA contains only exons (coding, simpler) including translated and untranslated regions
- So, each recombinant DNA (plasmid)
   contains a specific gene of only exons
   (coding) including translated and
   untranslated regions

The recombinant DNA (plasmid) is inserted into a bacterial cell to be cloned and amplified → then isolating DNA (cDNA or genomic DNA) into collections

- If we want to create a library from cells from different tissue; skin cell, neuron cell, muscle cell:
  - o Genomic DNA libraries -> will be identical libraries because they all have the same genome
  - o cDNA library → will be different libraries because each cell express genes at different levels

# Yeast two-hybrid system

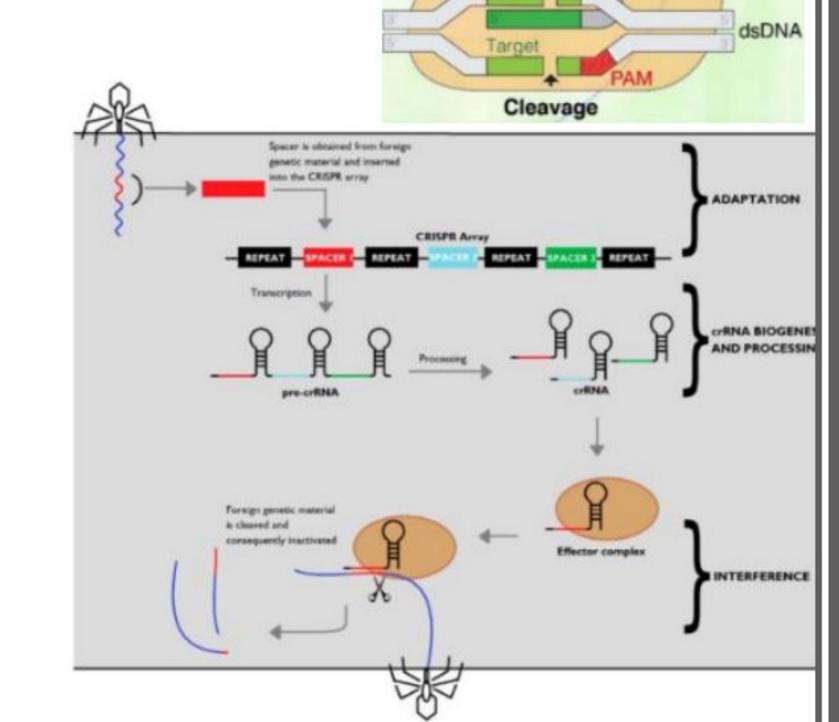
- In yeast → there is a <u>regulatory element</u> known as UAS element which exist upstream of the activating sequences → The UAS element is a <u>binding site of a transcription factor Gal4</u>
- The binding between Gal4 & UAS element induces the expression of a gene such as LacZ gene (reporter gene) in some yeast cells
- Gal4 protein consist of 2 domains :-
  - A DNA-binding domain (BD) → that binds to the UAS system.
  - An activating domain (AD) → that is responsible for the activation of transcription (stimulates RNA polymerase to transcribe the gene)
- Gal4 BD
- Both domains must be close to each other in order to induce transcription of a reporter gene
- The purpose of the yeast two-hybrid system is → investigate if 2 proteins interact with each other, by:
  - Creating 2 recombinant protein using recombinant DNA technology
- The 1<sup>st</sup> protein composed of DNA binding domain (BD) of Gal4 transcription factor & one protein
- The 2<sup>nd</sup> protein composed of activating domain (AD) of Gal4 transcription factor & another protein




A. Regular transcription of the reporter gene

- If these 2 proteins interact with each other  $\rightarrow$  then the 2 domains will be close to each other lead to  $\rightarrow$  a stimulation or induction of transcription of reporter gene (LacZ gene)
- ➤ If they don't interact → the 2 domain will not be close to each other → no transcription
- In order to discover/identify unknown proteins (Y) that interact with a known protein (X)
  - o Creating recombinant plasmid contains protein (X) gene & DB domain of Gal4 protein → the X gene is cloned so it is produced recombined with the DB domain
  - Creating another recombinant plasmid contains proteins (Y) gene & activating domain of Gal4 protein → cloned so it is produced integrated (recombined) with AD domain




- Both recombinant plasmids are transferred into yeast cell (each yeast cell has the 2 plasmids) so all of them express the X-DB hybrid, but each one expresses a different Y-AD hybrid (Y1, Y2, Y3...)
- Yeast cells are grown in the presence of a lactose analog called X-gal, which generates a blue product when cleaved by β-Galactosidase.
- If the 2 protein (X & Y) interact with each other → then they will stimulate transcription of LacZ gene → producing β-Galactosidase → which cleave X-gal (instead of lactose) → generating blue colonies.
- If the 2 protein (X & Y) don't interact with each other → NO transcription of LacZ gene → NO β-Galactosidase → NO cleavage of X-gal → NO blue color (the colonies would look in white color).
  - > The possibilities and outcomes of yeast cell that produce :
- 1) Normal Gal4 (with its 2 domain)  $\rightarrow$  (transcription)  $\rightarrow \beta$ -Galactosidase  $\rightarrow$  cleavage  $\rightarrow$  blue color
- 2) Only the DNA binding domain with X gene → NO transcription → white color
- 3) Only the activation domain with Y gene → NO transcription → white color
- 4) X gene with Y gene together:
  - o If the X & Y interact with each other → blue color
  - If the X & Y don't interact with each other → white color



Blue yeast colonies are picked and plasmids are isolated to identify the unknown genes/proteins that
interact with the known gene/protein, then we identify this gene (using sequencing, PCR,
immunoblotting ...)

# CRISPR-CAS9 and gene editing

- CRISPR: clustered regularly interspaced short palindromic repeats exist as <u>bacterial genetic</u> system that constitutes the **immune**
- Cas9 (Ribo-nuclease): RNA-guided nuclease that can either create single or double strand breaks
- In the adjacent figure, a genetic system <u>exist in bacteria</u> of palindromic repeats (in black) separated by other viral sequences (colored)
- Cas9 is associated to a short RNA fragment known as guide RNA (gRNA)
  or single guide RNA (sgRNA) that direct the nuclease into its target on DNA
- RNA molecule is complementary to the target segment of the genome
- When a phage infects a bacterial cell it inserts its DNA into the cell, the cell degrades the phage DNA into smaller pieces and integrates one of these fragments into the CRISPR
  - ✓ The palindromic repeats are hydrogen bounded and form stem-looped structure
- The cell transcribes the DNA producing several RNA molecules
   (gRNA) → These RNA molecules integrated into the Cas9
   nuclease and guides it to the same phage DNA (when it infect the cell again) to degrade it.

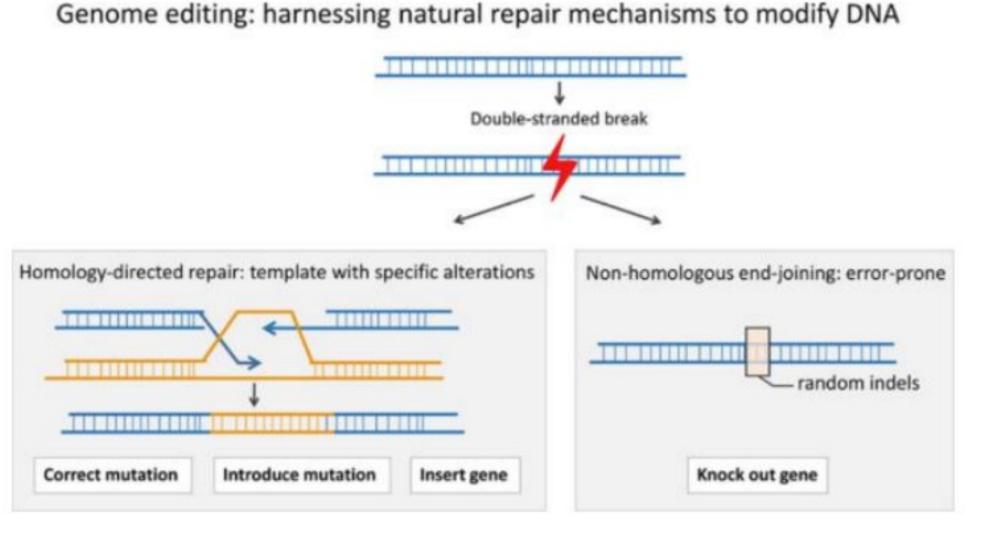


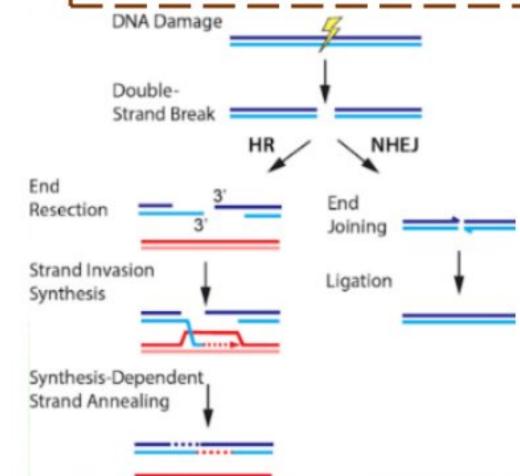
Foreign DNA

**CRISPR locus** 

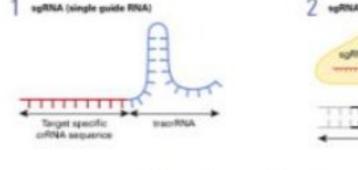
Integration

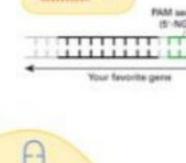
# DNA repair mechanisms in human cells


We have 2 repair systems when DNA has breaks:


# Homology directed repair (HR)

- When we have a DNA break → the cell benefits from the present of the homologous DNA (diploid cells)
- We use a part of the <u>homologous chromosome</u> as a template to fill the gaps (breaks) in the damaged DNA


# Non-homology & joining repair (NHJE)


- It does not depend on the presence of the homologous DNA)
- This system of repair produce → glued DNA molecule → that creating indels → creating defective gene (mutated or nonfunctional)
  - ✓ Indel insertion or deletion of nucleotides producing a frameshift mutation





- By the recombinant DNA technology (cloning a gene into a plasmid) → Cas9
  gene & RNA molecule that would integrated into Cas9 protein → can be
  introduced into human cells
- Cas9 protein <u>is directed</u> (by gRNA) to a <u>region we want</u> in human chromosome that is complementary to this RNA → HDR system replaces the damaged DNA





# We can use Cas9 protein in gene editing:

- o Replacing a defective gene with the normal one:
  - Introducing Cas9 gene + prober gRNA (Directing Cas9 to the region we want to replace)
  - > Also we introduce the DNA to be inserted (the normal DNA)
  - Cas9 cut → activation of the <u>Homology directed repair system</u> (<u>it will use the</u>
    <u>DNA we introduced</u>) → a mutated gene is <u>replaced by a normal one</u> (or the opposite)



- Introducing Cas9 gene + prober gRNA + a defective DNA
- Cas9 cut the normal gene out and defective one is inserted (by HDR) to the chromosome → then we can study what this gene will affect or what the importance of the normal gene

# OR

- ➤ We introduce Cas9 gene + prober gRNA only
- Non-homology & joining repair system → the cells will take the DNA and glue it → creation of indels mutations → leads to a frameshift mutation → damaging the gene

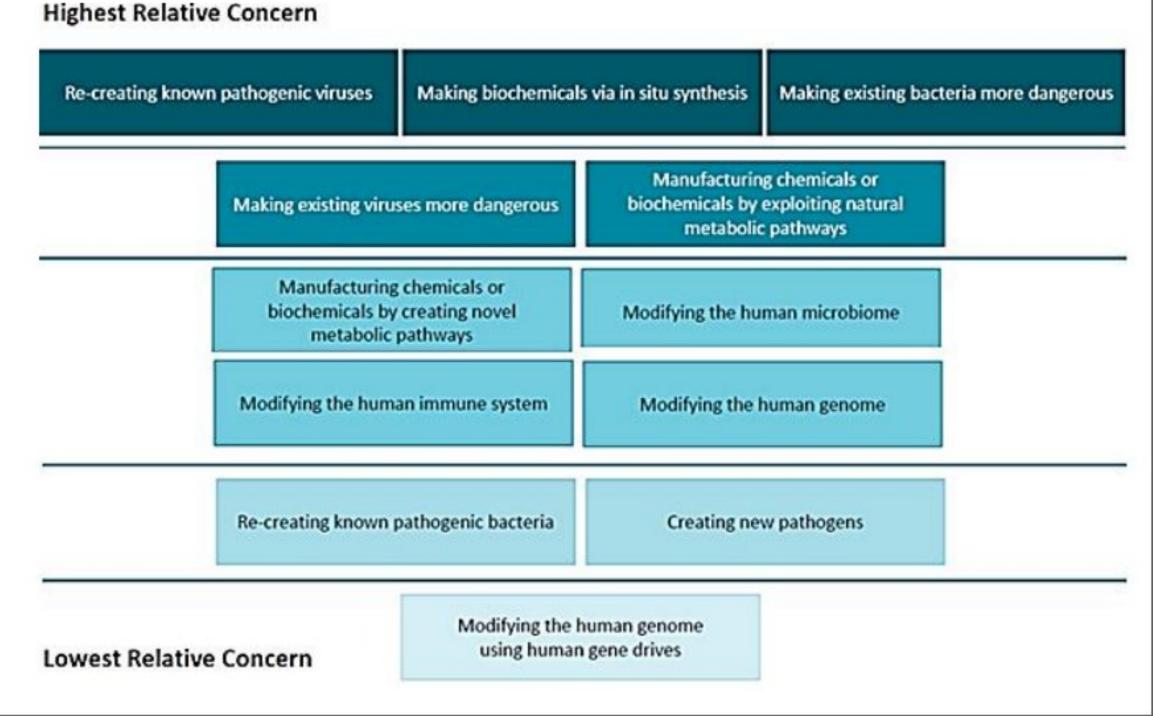
### We can use Cas9 protein in other creative uses:

- We can use the Cas9 as a guider:
  - By associating this protein to Cas9 & its gRNA → and mutating Cas9 so it bind a certain sequence without cutting it → so it can guide the protein associated to it to the region where in functions
- Can used to visualize where the plasmid is taken to in the cell
  - ➤ By associating Cas9 gene with GFP → giving a signal (light) → so we can visualize the where the plasmid that contain this gene is taken to

#### Other Cas9 enzymes :-

- o Cas12a: a smaller enzyme that produce staggered cut rather than blunt cut
- o Cas13a: a specific enzyme for RNA nuclease
- Scientists are trying to edit our DNA & fingerprint or to change it using Cas9 system, cut certain region either to
  fix them or to stop genes, and make a pill of the DNA contain this system
- Scientists are also trying to do a genetic modifying of the human embryos by using Cas9 system

One of the experiment of modifying DNA disturbing a CCR5 gene which is important for the entry of HIV virus into our cells and the intelligence


#### Bioterrorism

 Certain things that can be done including modifying human genome; modifying human microbiome, modifying pathogenic bacterial genome and so on → causing dangerous conditions

Category B

Category C

Potentially Dangerous

