The Modification	The position of modification	The suffix, prefix	The result
Oxidation	Anomeric carbon → Last carbon → Or both →	–onic –uronic –aric	Sugar acids (not a sugar) [Carboxyl group → COOH]
Reduction	Anomeric carbon (carbonyl group is reduced into hydroxyl)	–itol	Sugar alcohol (not a sugar) [Hydroxyl group → OH]
Reduction	Any Hydroxyl group (OH is reduced into Hydrogen)	Deoxy–	Deoxy-sugar (it still a sugar) [Hydrogen → H]
Phosphorylation (Esterification)	Any Hydroxyl in the molecule (adding phosphate group)	–phosphate	Sugar-phosphate
Glycosides	Anomeric carbon with any other molecule		Glycosides
Amination (adding amino group)	Any OH (other than anomeric) replaced by NH ₂	-amine	Amino sugar [OH → NH2]
Acetylation (adding acetyl)	Acetyl added to the amino group	N-Acetyl–	

- Important Notes:
- 1) Sugars rings are Hemi-acetal or Hemi-Ketal
- 2) The bond between:
 - ➤ Sugar + Phosphate → ester linkage
 - ➤ Amino + Acetyl groups → Amide bond
- 3) If a sugar interacted with other molecule by O atom \rightarrow that produces Acetal or Ketal
 - Such as O-glycosides
 - > Phosphorylation of the anomeric carbon

• Important Notes (carbohydrates generally):

- 1) We <u>don't</u> have **Beta-glycosidases** which break bonds between **beta sugars**
- 2) We have Alpha-glycosidases which break bonds between Alpha sugars
- 3) We don't have Alpha-Galactosidase which break bonds of alpha galactose

- ▶ The simplest aldose \rightarrow 3 carbons \rightarrow Glyceraldehyde
- ▶ The simplest Ketose \rightarrow 3 carbons \rightarrow dihydroxyacetone
- ➤ Erythrose → Aldose with 4 carbons (tetrose)
- ➤ Xylulose → Ketose with 5 carbons (pentose)
- Sorbose → Ketose with 6 carbons (Hexose)
- > Don't forget to memorize glucose, galactose, mannose ...

