

Plasma Proteins

What should we know?

- 1. What is plasma, and how can we extract it?
- 2. What are the different components of plasma?
- Plasma proteins (general functions, basis of classification, associated processes and molecules)
- 4. Plasma proteins: (structure, synthesis, function & diseases associated)

Albumin & pre-albumin	α1-antitrypsin	Haptoglobin (Hp)
α1-fetoprotein (AFP)	Ceruloplasmin	C-Reactive Protein

Blood **Blood Blood** parts Cells Plasma 55% of blood volume 45% of blood volume **RBCs** blood -> + **Platelets** WBCs plasma (water and other stuff) white blood cells **Neutophils Basophils** red blood **Esinophils** cells platelets Monocytes Lymphocytes plasma Buffy WBCs & platelets coat RBCs

Blood: plasma vs. hematocrit

Hematocrit or packed cell volume (Adult male: 47 %, Adult females: 42 %)

Blood: what is inside plasma

Plasma

Liquid medium where cells are suspended

Composition: • Water (92%) • Solids (8%)

Organic:

- > Plasma proteins: Albumin, Globulins & Fibrinogen
- Non-protein nitrogenous compounds: urea, free amino acids, uric acid, creatinine, creatine & NH₃
- Lipids: Cholesterol, TG, phospholipids, free fatty acids
- Carbohydrates: Glucose, fructose, pentose
- Other substances as: Ketone bodies, bile pigments, vitamins, enzymes & hormones

Inorganic: Na⁺, K⁺, Ca²⁺, Mg²⁺, Cl⁻, HCO₃⁻, HPO₄²⁻, SO₄²⁻

Plasma proteins are a mixture

More than 500 plasma proteins have been identified
 Normal range 6-8 g/dl (the major of the solids)
 Simple & conjugated proteins (glycoproteins & lipoproteins)

The separation of plasma proteins

- Salting-out (ammonium sulfate): fibrinogen, albumin, and globulins
- Electrophoresis (most common): serum
 (defebrinated plasma), five bands (albumin, α1, α2, β, and γ)

NORMAL VALUES:

Name	Absolute values (g/l)	Relative values (%)
Albumins	35 – 55	50 - 60
α1-globulins	2 - 4	4.2-7.2
α 2-globulins	5 – 9	6.8 – 12
β-globulins	6 – 11	9.3 – 15
γ-globulins	7 – 17	13 – 23

Electrophoresis of plasma proteins

- Albumin is smaller than globulin, and slightly negatively charged
- Globulins (3 bands):
- α band:
 - α1 region consists mostly
 of α1-antitrypsin

- β band: transferrin, LDL, complement system proteins
- γ band: the immuno-globulins

Synthesis of plasma proteins

- Mostly liver (albumin, globulins), γ-globulins (plasma cells; lymph nodes, bone marrow, spleen)
- Most plasma proteins are synthesized as preproproteins (signal peptide)
- Various posttranslational modifications (proteolysis, glycosylation, phosphorylation, etc.)
- Transit times (30 min to several hours)
- Most plasma proteins are Glycoproteins (N- or Olinked). Albumin is the major exception

Plasma Proteins & Polymorphism

- > A mendelian or monogenic trait
- > Exists in population in at least two phenotypes, neither is rare
- The ABO blood groups are the best-known examples
- α1-antitrypsin, haptoglobin, transferrin, ceruloplasmin, and immunoglobulins
- Electrophoresis or isoelectric focusing

Plasma Proteins Half-Lives

- Determined through isotope labeling studies (I¹³¹)
- Albumin & haptoglobin (20 & 5 days)
- Diseases can affect half-lives (ex. Crohn's disease), albumin may be reduced (1 day)
- Protein-losing gastroenteropathy

Functions of plasma proteins

General functions

- A nutritive role
- Maintenance of blood pH (amphoteric property)
- Contributes to blood viscosity
- Maintenance of blood osmotic pressure

Specific functions

- Enzymes (e.g. rennin, coagulation factors, lipases)
- Humoral immunity (immunoglobulins)
- Blood coagulation factors
- Hormonal (Erythropoietin)
- Transport proteins
 (Transferrin, Thyroxin binding globulin, Apolipoprotein)

Starling forces

- Arterioles, venules vs. tissue hydrostatic pressure (37 & 17 vs. 1 mm Hg)
- Plasma proteins oncotic pressure is 25 mm Hg
- Edema can be a result of protein deficiency

Acute-phase proteins

- Levels increase (0.5-1000 folds), acute inflammation, tissue damage, chronic inflammation & cancer. C-reactive protein (CRP)α1 -antitrypsin, haptoglobin, & fibrinogen
- Interleukin-1 (IL-1), main stimulator (gene transcription)
- Nuclear factor kappa-B (NFkB): Exist in an inactive form in cytosol, activated and translocated to nucleus (interleukin-1)
- Negative acute phase proteins: prealbumin, albumin, transferrin

Albumin

- The Major Protein in Human Plasma, 69 kDa, half-life (20 days)
- The main contributor to the osmotic pressure (75-80%)
- Liver: 12 g/day (25% of total protein synthesis) (liver function test)
- Synthesized as a preproprotein
- One polypeptide chain, 585 amino acids, 17 disulfide bonds
- Proteases subdivide albumin into 3 domains
- Ellipsoidal shape (viscosity) vs. fibrinogen
- > Anionic at pH 7.4 with 20 negative charges

Albumin binding capacity

- binds various ligands:
 Free fatty acids (FFA)
 Certain steroid hormones
 Bilirubin
 - Plasma tryptophan

- Metals: Calcium, copper and heavy metals
- Drugs: sulfonamides, penicillin G, dicumarol, aspirin (drug-drug interaction)

Analbuminemia

- There are human cases of analbuminemia (rare)
- > Autosomal recessive inheritance
- One of the causes: a mutation that affects splicing
- Patients show moderate edema!!!

Other clinical disorders

- > Hypoalbiminemia: edema seen in conditions where albumin level in blood is less than 2 g/dl
 - Malnutrition (generalised edema)
 - Nephrotic syndrome
 - Cirrhosis (mainly ascites)
 - Gastrointestinal loss of proteins
- > Hyperalbuminemia: dehydration (relative increase)

Other clinical disorders

- Drug-drug interaction:
 - Bilirubin toxicity (aspirin is a competitive ligand of albumin): kernicterus and mental retardation
 - Phenytoin-dicoumarol interaction

Prealbumin (transthyretin)

Migrates ahead of albumin, 62 kDa

- It is a small glycoprotein (rich in tryptophan, 0.5% carbohydrates)
- > Blood level is low (0.25 g/L)
- It has short half-life (≈2 days): sensitive indicator of disease or poor protein nutrition
- Main function:
 - ✓ T4 (Thyroxine) and T3 carrier

Globulins

α1-globulins	α2- globulins	β- globulins	γ-globulins
∎α1-antitrypsin	Ceruloplasmin	■CRP	∎IGG
α1-fetoprotein	Haptoglobin	 Transferrin 	∎IGA
∎α1- acid	∎α2-macroglobulin	Hemopexin	∎IGM
glycoprotein		■ β2-	∎IGD
Retinol binding protein		microglobulin	■IGE

α1- antitrypsin

- γ
 α
 1
 Antiproteinase (52 kDa)
- Neutralizes trypsin & trypsin-like enzymes (elastase)
- > 90% of α1- globulin band
- > Many polymorphic forms (at least 75)
- > Alleles Pi^M, Pi^S, Pi^Z, Pi^F (MM is the most common)
- Deficiency (genetic): emphysema (ZZ, SZ). MS, MZ usually not affected
- Increased level of α1- antitrypsin (acute phase response)

Active elastase + α_1 -AT \rightarrow Inactive elastase: α_1 -AT complex \rightarrow No proteolysis of lung \rightarrow No tissue damage Active elastase + \downarrow or no α_1 -AT \rightarrow Active elastase \rightarrow Proteolysis of lung \rightarrow Tissue damage

Smoking & α1- antitrypsin deficiency

 Chronic inflammation (neutrophil elastase)
 Oxidation of Met³⁵⁸
 devastating in patients with Pi^{ZZ}

methionine

methionine-sulfoxide

Liver disease & α1- antitrypsin deficiency

 Liver disease: ZZ phenotype polymerization (loop with β-sheet), aggregates in liver, cirrhosis (10%)

7

α1- fetoprotein

- Synthesized primarily by the fetal yolk sac and then by liver parenchymal cells
- Very low levels in adult
- > Functions of α_1 -fetoprotein:
 - Protect the fetus from immunolytic attacks
 - Modulates the growth of the fetus
 - Transport compounds e.g. steroids
 - Low level: increased risk of Down's syndrome
- > Level of α_1 -fetoprotein increases in:
 - ✓ Fetus and pregnant women <u>Normally</u>
 - Hepatoma & acute hepatitis

Haptoglobin (HP)

- It is an acute phase reactant protein
- α2 glycoprotein (90kDa)
- > A tetramer $(2\alpha, 2\beta)$
- > 3 phenotypes:
 - ✓ Hp 1-1→ α1, α1 + 2β ✓ Hp 2.1 → α1, α2 + 2β
 - ✓ Hp 2-1→ α1, α2 + 2β
 ✓ Hp 2-2→ α2, α2 + 2β
- Binds the free hemoglobin (65 kDa); prevents loss of hemoglobin & its iron into urine
- Hb-Hp complex has shorter half-life (90 min) than that of Hp (5 days)
- Decreased level in hemolytic anemia

Ceruloplasmin

- A copper containing
 glycoprotein (160 kDa)
- It contains 6 atoms of copper
- Metallothioneins (regulate tissue level of Cu)
- Regulates copper level: contains 90% of serum Cu

Cu-containing enzymes

Amine oxidase

Copper-dependent superoxide dismutase

- Cytochrome oxidase
- Tyrosinase

- A ferroxidase: oxidizes ferrous to ferric (transferrin)
- Albumin (10%) is more important in transport
- Decreased levels in liver disease (ex. Wilson's, autosomal recessive genetic disease)

C- reactive protein (CRP)

CRP Level

- A homopentameric acutephase inflammatory protein
- Able to bind to a polysaccharide (fraction C) in the cell wall of pneumococci
- Help in the defense against bacteria and foreign substances

15 10 10 10 10 10 10 10 15 20 25Postop Day

- Undetectable in healthy individuals, detectable in many inflammatory diseases (Acute rheumatic fever, bacterial infection, gout, etc.) & Tissue damage
- Its level reaches a peak after 48 hours of incident (monitoring marker)