

Dr.Ahmad Al-Qawasmi

Biochemistry Sheet 9

Protein Structure

Peptide bond

- **Peptide bond:** A covalent bond between 2 amino acids → formed between the **carboxyl group** of an amino acid **with** the **Amino group** of the second one in the backbone of peptides (proteins)
 - ▶ This bond is an <u>amide bond</u> \rightarrow but it is called peptide bond proteins
 - > It is formed by a <u>condensation (dehydration)</u> reaction \rightarrow losing H₂O
 - > R group doesn't participate in the formation of peptide bond
- Peptides & polypeptides
 - ▶ Peptides \rightarrow consist of **2 to several** residues of amino acids
 - ➢ Polypeptides → consist of many residues of amino acids (large number, usually more than 100)
 - > Proteins \rightarrow consist of **1 or more polypeptide** chains \rightarrow so proteins are <u>polymers of amino acids</u>

• <u>Cis & Trans configurations of peptides:</u>

- According to the orientation of the side chains, peptides can be:
 - ➤ Cis → R groups of amino acids have the <u>same</u> orientation → that produces <u>high steric</u> energy (repulsion) leading to steric hindrance
 - > Trans → R groups of amino acids have <u>opposite</u> orientation → that produces <u>less steric</u> energy (repulsion) preventing to steric hindrance
 - ➤ So trans is preferred on cis (because trans have less energy) → most amino acids are mainly in trans orientation <u>except proline</u>
 - In proline → Cis & trans conformations have equivalent energies so no one of them is preferred on the other
 - o Proline present is cis configuration more than other amino acids

<u>Resonance structure:</u>

- Peptide bond shifts (alternate) between the single & double bond forms, because
 - ✓ The shifting of lone pairs of electrons between the N (of amine) and O (of carboxyl)
 - \checkmark So, the double bond shifts ightarrow it can be formed between C with O or N
 - ✓ This electron shifting causes the appearance of positive charge on N & negative on O
- So peptide bond is stronger, rigid & planar → due to the resonance stabilization (partial double bond) → and this rigidity prevents rotation around the peptide bond

Hydrogen bonding:

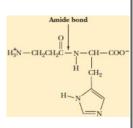
- Amino acids can form H-bonds with each others (or with water) by the contribution of H atom of the Amine group of one amino acid (H-bond donor) with O from the other one (acceptor)
- All amino acids can be H-bond donor or acceptors except proline which can be acceptor but not donor → because it amine group is secondary (lost the H that can be donated)

• Notes:

- > Peptide (polypeptide) chain is read from N-terminus (amino end) to C-terminus (carboxyl end)
- > The order of amino acids in a peptide chain affects its properties
- \blacktriangleright While reading a peptide chain \rightarrow there will be a repeated sequence of functional groups
 - ✓ Amide → α -C with R group → carbonyl

Small peptides with physiological functions

- 1) <u>Carnosine (β-Alanyl-L-Histidine)</u>
- It is a <u>naturally occuring dipeptide</u> of β-Alanine (unusual amino acid) with L-histidine
 - β-Alanine → usually amino acids are α (because the R group is attached to α-carbon) but here the R group is attached to β-carbon → this β-Alanine is synthesized naturally in the body
- It is highly concentrated in the muscles & brain tissues
- <u>Functions:</u>
 - > Protection of cell from ROS (radical oxygen species) & peroxide
 - Muscle contraction
 - 2) Glutathione (γ-glutamyl-L-cysteinylglycine)
- It is a tripeptide that consists of → γ-glutamate, cysteine & Glycine
 - \succ γ-glutamate → unusual amino acid → with the side chain on γ-carbon
- It functions as anti-oxidant
 - Scavenger oxidizing agents by reacting with them → is will be oxidized (lose electrons) from its cysteine residue (on thiol group) → then it will react with another glutathione molecule forming disulfide bridges → until being recycled (enzymatically) to be reused again


3) Enkephalins

- They are **pentapeptides** in the **brain** → they are 2 types differ in the <u>amino acid in the C-terminus only</u>
 - ▶ Leucine enkephalin \rightarrow ends with leucine
 - ▶ Methionine enkephalin \rightarrow ends with methionine
 - ➤ The amino acids are → Tyr-Gly-Gly-Phe-(Leu or Met)
- They are naturally occurring analgesics (pain relievers)
 - > The relieve pain by binding to specific receptors cause a pain killing response
 - > The aromatic side chains of Tyr & Phe play important role in their activity
- **Opiates (such as morphine)** have a **similar structure** of enkephalins → so they can bind to the same receptors of pain killing (relieving)
 - > The common amino acid (structure) between them is tyrosine
 - Morphine is used in hospitals for some cases (such as cancer & surgical operations)

4) Oxytocin & Vasopressin

• Their structure:

- > Similarities:
 - ✓ Both of them consist of 9 Amino acids, with a cyclic structure due to the disulfide bridge between cysteine residues (Amino acids number 1 & 6)
 - \checkmark Both of them have **amide group** at the C-terminus instead of carboxyl group
- > Differences:
 - ✓ They have the same amino acids → except for residues **3 & 8**
 - ✓ Oxytocin → Ile & Leu
 - ✓ Vasopressin → Phe & Arg
- Both are secreted from the hypothalamus and stored in the posterior pituitary gland

• Functions:

- > <u>Oxytocin</u>
 - Induces labor in pregnant women by controlling contraction of uterine muscle and stimulates the flow of milk in a nursing mother
 - ✓ During pregnancy, the number of receptors for oxytocin in the uterine wall increases
 - ✓ As the cervix stretches, sending nerve impulses to the hypothalamus as a positive feedback to release more oxytocin by the posterior pituitary gland
- Vasopressin = ADH hormone
 - ✓ Vasopressin controls of blood pressure by regulating smooth muscle contraction
 - ✓ Vasopressin is released by the action of the hypothalamus on the posterior pituitary
 - Vasopressin stimulates water reabsorption by the kidney (an antidiuretic effect) resulting in water retention and blood pressure increase
 - ✓ It increases at night

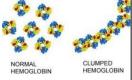
5) Gramicidin S and Tyrocidine A

- Cyclic structure formed by peptide bonds
- Two cyclic **decapeptides** produced by the **bacterium Bacillus brevis** → we can't produce them
- Both are antibiotics
- Both contain D-amino acids and L-amino acids
- Both contain the amino acid ornithine (Orn), a metabolic intermediate
 - > Ornithine: Naturally occuring amino acid, involved in urea cycle → not used in protein synthesis

6) Aspartame (L-Aspartyl-L-phenylalanine)

- It is a **dipeptide** \rightarrow with a methanol group on the C-terminus (methyl ester)
- It is used as an artificial sweetener \rightarrow 200 times sweet than sugars
- If one of the 2 amino acids or both are replaced by D-isomer \rightarrow It will be **bitter** rather than sweet
- Used in diet soft drinks \rightarrow with a controversial safety
- It shouldn't be given for people with PKA
- **PKA (Phenylketonuria)** → A hereditary disorder with metabolic defect (lack Phe hydroxylase)
 - > Cause the accumulation of Phenylpyruvate \rightarrow causing mental retardation
 - Must limit the sources of Phe such as aspartame
 - \blacktriangleright They can use Alatame instead of aspartame \rightarrow Phe is replaced by Ala

Protein Structure


- Proteins are macromolecules composed of a large number of amino acids connected by peptide bond
 - Proteins have different structures, with a huge variety (probabilities) of amino acids order
 - So, a protein may has gazillion possibilities of structures but only a few would be active
 - ➤ Active structures are called native conformations → properly folded (3D structure) & functional
- The difference between a Protein & a polypeptide:
 - > Polypeptide: A sequence of amino acids linked by peptide bonds
 - Protein: Consists of <u>1 or more polypeptide</u> chains → having a certain **3D structure & Function**

• Levels of proteins structure:

> Primary, Secondary, Tertiary & Quaternary

1) Primary structure:

- It is the first level of protein structure → represents the sequence of amino acids from N to C terminus
 - Such as this sequence Leu Gly Thr Val...
- The primary structure <u>determines the other levels</u> of proteins structure → so any change in the amino acids sequence will **affect the final conformation** of the protein → producing a **malfunctioning protein**
- Such as Sickle Cell hemoglobin (HbS) & Cystic fibrosis:
- Sickle Cell Anemia
 - A Hereditary disease caused by a mutation changes the amino acid in the 6th position of β-globin from Glu to Val, results in:
 - > Clumped Hemoglobin forming arrays of aggregates
 - ➤ Causing the deformation of RBCs → having a sickle shape

- ✓ Normal RBC is a <u>biconcave disc</u> with <u>high flexibility</u> allowing it to move inside small vessels
- ✓ Sickle shape makes RBCs much less flexible decreasing the efficiency of transporting O₂
- Cystic fibrosis
 - A Hereditary disease caused by a mutation is **CFTR gene** (linked to fluoride ion transport)
 - ➤ It causes the exocrine glands excretion to be thicker & harder (mucus) → forming a suitable environment for the growth of bacteria in the respiratory & digestive system

2) Secondary structure:

- Hydrogen-bonded localized organization of parts of a polypeptide chain → forming the basic shape of these part
 - > These shapes can be either α -helix, β -sheets, Turns or loops
 - > They are formed due to the variation in the **orientation** of the <u>backbone</u>
 - ✓ Peptide bond can't rotate
 - ✓ Bonds between α-carbon with Amine group (Phi Φ) and between α-carbon with Carboxyl group (Psi Ψ) can freely rotate

α-helix

- It looks like a <u>helical rod (spring)</u> → with **3.6 amino acid residues per turn** (in average)
- The **pitch of the helix = 5.4** Å (it is the linear distance between the corresponding points on a turn)
- R groups are **pointed outward** to <u>reduce the steric hindrance</u> \rightarrow So it is hollow (empty from inside)
- It is very stable \rightarrow due to the **linear H-bonds**
- Some amino acids can't contribute (found) in α-helix:
 - ➤ Glycine → because it is very small
 - ▶ **Proline** \rightarrow because:
 - ✓ No Rotation on the bond between N & α -C → due to rigidity
 - ✓ No H-bonding on the α-amino group → because it is secondary amine (no H to donate)
 - Similarly charged amino acids can't present in proximity \rightarrow to prevent repulsion
 - > Amino acids with branches on β -C such as Valine, Isoleucine & threonine

- <u>Note:</u>
 - > Integral membrane proteins are consist mainly of α -helix
 - > <u>Some</u> proteins have **amphipathic helices** (such as channels)
 - ✓ Hydrophobic R groups face the hydrophobic core of the lipid bilayer (outward)
 - ✓ Hydrophilic A.A (polar) facing inside allowing **hydrophilic molecules** (ions, water) to pass

β-sheets (β pleated sheets)

- They are composed of two or more straight chains (β-strands) that are hydrogen bonded side by side
- R groups have trans orientation \rightarrow having a zigzag shape \rightarrow giving more space than α -helix
- β -strands forming a β -sheet can be either:
 - > Parallel to each other (C-terminus faces C-terminus of the other strand and N faces N)
 - > Antiparallel to each other (C-terminus faces N-terminus of the other strand)
- A protein can contain parallel, anti-parallel or mixed β-sheets
- A.A. having a **branch on** β **-carbon** (Val, Ile, Thr) & **large aromatic amino acids** (Phe, Trp, Tyr) tend to present in β -sheets \rightarrow because they have enough space to protrude upward and downward
- **Proline** tends to **disrupt** β -sheets \rightarrow can't form H-bonds on amine group

β-Turns

- Turns are compact, U-shaped secondary structures, also known as β turn or hairpin bend
 They are important for the 3D structure of proteins (especially globular proteins)
- Glycine and proline are commonly present in turns
 - > Proline create a kink (sharp turn) because it is rigid
 - > The second residue is Proline & the 3rd one is glycine
- Turns are usually **short** and link between <u>Anti-parallel</u> β-sheets
- Loops are usually **long** and link between <u>Parallel</u> β -sheets

• <u>Super-Secondary structures:</u>

- They are regions in proteins that contain an ordered organization of secondary structures
 - So, they are structures between the secondary and the tertiary levels
- Example: Motifs
 - ➤ Repetitive super-secondary structure, which can often be repeated and organized into larger motifs → motifs consist of a small portion of a protein (less than 20 A.A.)
 - ➤ They are <u>structural regions</u> → indicates the folding of the protein but <u>do not indicate the</u> <u>biological function of the protein</u>
 - > Example of motifs:
- o Helix-loop-Helix is found in many proteins that bind DNA \rightarrow two α -helices connected by a loop
- Helix-turn-helix is capable of binding DNA \rightarrow two α -helices joined by a short strand of amino acids
- o Immunoglobulins fold enables interaction with molecules of various structures & sizes
 - ✓ Immunoglobulins are antibodies (recognize foreign bodies)
 - ✓ They contain repeated structural units (motif)

- Domain: A domain is a compactly <u>folded region</u> of polypeptide found in proteins with <u>similar function</u> and/or <u>structure</u> → Domains with similar conformations are associated with the particular function
 - > A structural domain may consist of **100 200 residues** in various combinations of α helices, β sheets, turns, and random coils
 - > They fold independently of the rest of the protein
 - Domains may also be defined in functional terms enzymatic activity, binding ability (e.g., a DNA binding domain)

3) Tertiary structure:

- The <u>overall conformation</u> of a polypeptide chain → The **3D arrangement** of all the amino acids residues
 - Tertiary structure represents the spatial arrangement of amino acids in <u>1 polypeptide chain</u>
 - > Also, in this stage \rightarrow modifications occur (such glycosylation)
- This structure is determined by the interactions between side chains (R-groups)

• Shape determining forces:

- > Non-Covalent Interactions determine the 3D structure of the proteins
 - o Hydrogen bonds
- Occur between Amino acids within or between polypeptide chains or it can be formed with water

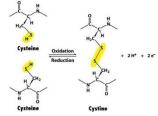
o Charge-Charge interactions (Salt bridges)

- <u>Electrostatic</u> interactions occur between **positively charged** R-groups
- **Charge-dipole** interactions form between **water** (**partially** charged) with **Charged R** groups of A.A.
 - > The same groups can form either <u>H-bonds or electrostatic interaction</u>

o Van Der Waals forces

- There are both attractive and repulsive van der Waals forces that control protein folding
- Although van der Waals forces are <u>extremely weak</u> (very transient) → but they are <u>significant</u> (important) because there are so many of them in large protein molecules → having an accumulative effect
 - ➤ They are considered transient → because they depend on the position of electrons around the nucleus which is constantly changing

o Hydrophobic interaction


- Hydrophobic groups are clustered together rather than extended into the aqueous surroundings → making the protein more thermodynamically (energetically) stable when
 - So non-polar groups are away from the aqueous solution & polar are exposed (faces) it
- the most important force that determines a protein structure is basically hydrophobic interactions
- Note:
 - Polar amino acids can be in the interior of the protein playing important role in its function
 ✓ Also, they will form H-bonds with each other & with the back bone
 - Also, they will form in-bolids with each other & with the back t
 - Non-polar amino acids can also be on the surface of the protein

Stabilizing factors:

- > They are forces that stabilize the structure of the protein but don't determine its 3D structure
- 1) Disulfide bonds
- They are formed between 2 Sulfur atoms (in thiol group) of 2 Cysteine residues
 - ➤ Oxidation (loss electrons) of thiol group → forming disulfide bond with another Cysteine
 - ➤ Reduction → breaking disulfide bonds
- The formation of disulfide bonds between 2 Cyst<u>ein</u>e residues \rightarrow forming Cyst<u>in</u>e amino acid
 - 2) Metal ions
- They can stabilize protein structure by forming:
 - Covalent interactions
 - Such as the metal ion (iron) in the heme of myoglobin → it is covalently linked to His
 - Salt bridges
 - Such as <u>Zinc</u> in the **Carbonic anhydrase** → <u>non-covalently</u> bonded to **3 His** residues
- There are many ways (models) in which we represent (illustrate) proteins:
 - A) Ribbon structure
 - > α -Helix is represented as a <u>ribbon</u> (helical rod)
 - β-Strands are represented as <u>thick arrows</u> (The direction of the
 - arrow → from N to C terminus)
 - **B)** Cylinder structure
 - \blacktriangleright α -Helix is represented as A cylinder
 - β-Strands are represented as <u>thick arrows</u>
 - C) Trace structure
 - We only draw (represent) the backbone
 - D) Ball & stick structure
 - We draw atoms (as small balls), backbone & their orientation (angles) representing the exact 3D structure
 - E) Space filling structure
 - \blacktriangleright Like Ball & stick but more complex \rightarrow balls are larger & the **backbone isn't seen**
 - F) Protein surface structure
 - G) Draws the surface of the protein only (without the interior)
 - > Used to design drugs and study their interactions with other proteins

4) Quaternary structure:

- It is the spatial arrangement of subunits & the nature of their interactions
 - Subunit = polypeptide chain
- It presents only in proteins that consist of more than one polypeptide chains (Oligomeric proteins)
 - > Monomer \rightarrow 1 polypeptides chain (1 subunit) \rightarrow <u>No Quaternary structure</u>
 - ➢ Dimer (2 subunits), Trimer (3 subunits) ... → have <u>Quaternary structure</u>
 - > If subunits forming oligomer are (similar \rightarrow Homo) / (Different \rightarrow Hetero)

- These subunits can be connected together by **disulfide bonds or non-covalent interactions**
- Examples:
 - > Immunoglobulins: Consist of 4 subunits of 2 light & 2 heavy chains (hetero-tetramer)
 - > Hemoglobin: Consist of 4 subunits each 2 of them are identical (hetero-tetramer)
 - Both of them have Quaternary structure

Protein Denaturation & Renaturation:	
 Denaturation It is disrupting the nature of the protein (native conformation), by: Breaking non-covalent interaction → then reducing disulfide bridges → disrupting the 3D structure Denatured protein loses its properties (activity, solubility) Denaturation is mostly irreversible (it can be reversible according to the structure of the protein and interactions involved) 	 Renaturation Returning (re-acquiring) the Native conformation of the proteins It occurs quickly and spontaneously (when denaturation agent is removed) Disulfide bods are reformed correctly Renaturation is not always possible Denaturation of egg proteins (by frying or boiling) is not able to renature
 Denaturing agents: ➤ Heat → disrupt van der waals (non-covalent) 	 Renaturation can refold proteins incorrectly (<u>not always correctly refolded</u>)
 interactions Extreme pH → will change the ionization (protonation) state of the A.A groups 	 If a protein (mainly small proteins) is unfolded, it can refold to its correct structure placing the disulfide (S-S) bonds in the right orientation
 > Detergents, such as: o Triton X-100 [nonionic, uncharged] → disrupts hydrophobic forces o SDS (Sodium dodecyl sulfate) [anionic, charged] disrupts hydrophobic & electrostatic interactions > Urea & Guanidine hydrochloride disrupt Hydrogen bonds & hydrophobic interactions > Reducing agents, such as β-mercaptoethanol (βME) & Dithiothreitol (DTT) o Disrupt disulfide bonds 	 Misfolded & partial folded (not correctly folded) proteins → have their <u>internal hydrophobic</u> regions exposed and interact with other hydrophobic regions on other molecules, and form <u>aggregates</u> These aggregates can be small (soluble dimers or trimers) OR insoluble fibrillar structures Both of them are toxic to cells
	• To <u>refold misfolded proteins</u> , we use chaperons
 The stability of the protein structure is determined by (factor): The amino acid sequence (mainly the internal residues) The peptide bond (rigid → can't rotate) The proper angels between A.A, by: Weak non-covalent interactions between the side chains (mainly) Non-protein molecules, such as heme & zink 	 Chaperons (barrel shape proteins) bind to polypeptide chains & help them refold correctly (to the most energetically favorable & stable folding pathway (structure)) They also prevent hydrophobic regions from associating to other proteins → preventing the formation of aggregates So, they contribute in the quality of proteins Chaperons require energy

• So, if Chaperons are defective (non-functional) that will lead to increase misfolded proteins causing **many diseases**, such as:

1) Prion disease

- Pathological condition result from the misfolding of prion protein (PrP^c) in the brain producing PrP^{sc}
 - \blacktriangleright PrP^c has a lot of α -helical conformation, but PrP^{sc} has more β strands forming aggregates
- This disease can be acquired by:
 - > Infection
 - Meaning that it can be caused by a <u>transmissible agent</u> by eating the meat of an affected cow (with misfolded proteins) which bind normal proteins causing them to misfold
 - > Inheritance
 - > Spontaneous
- Examples on this disease → Creutzfeldt-Jacob disease (in humans), and mad cow disease (in cows), and scrapie (in sheep)
 - ➤ Creutzfeldt-Jacob disease → makes the brain tissue to be spongy
 - 2) Alzheimer's disease
- It is not a transmissible disease but the presence of a family history of the disease increasing the chance to have the disease
- It is caused by the accumulation of Tau protein or Amyloid Aβ peptides → forming aggregates → that will damage the neurons and the supportive cells
 - ➤ Normally APP (Amyloid precursor protein) is a transmembrane protein is cleaved by the certain type of secretase enzyme (α-secretase) → producing peptides having polar and non-polar parts
 - If this <u>APP</u> is mutated → it will be cut by **other secretases** (β or γ) → causing the non-polar to be cleaved alone without a polar part with it → causing the accumulation of it → Alzheimer

Complex Protein Structures

Holo- & Apo- proteins

- Apoproteins: Proteins composed only of amino acids → without non-protein molecules
- Holoproteins: Proteins conjugated to (linked) to non-proteins molecules (such as metals & heme)
 - Such as Glycoproteins (such as immunoglobulins) → proteins are covalently linked (conjugated) to carbohydrates (sugars)
 - **N-linked** \rightarrow The sugar is linked to amide nitrogen of the R-group of <u>Asparagine</u>
 - O-linked → The sugar is linked to the hydroxyl group of <u>serine</u>, <u>Threonine</u> and occasionally <u>hydroxylysine</u>
 - ➤ They can also be linked to lipids forming → lipoproteins
 - ➤ Proteins can be phosphorylated proteins → phosphoproteins
 - o Phosphorylation can activate or inhibit metabolic pathways
 - ▶ Hemoproteins \rightarrow linked to heme group