Nafith Abu Tarboush DDS, MSc, PhD natarboush@ju.edu.jo www.facebook.com/natarboush

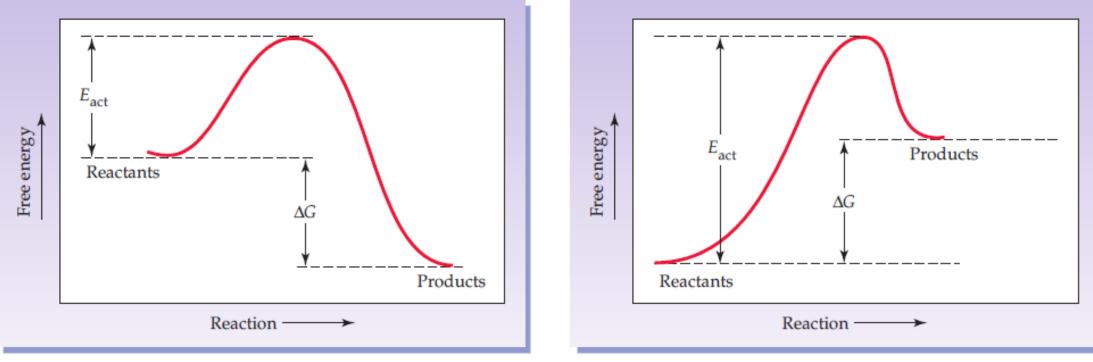
Bioenergetics

Energy & why do we need it?

- Definition: Capacity to perform work
- What for? Mechanical, Active transport, Biosynthesis, Heat
- Types of energy: ✓ 1- Kinetic: Energy in the process of doing work or Energy of motion
 - Potential: Energy content stored in a matter
- Whether a reaction occurs or not!
- > Stability vs. energy

The major purpose of metabolism

- > Metabolism: Sum of all biochemical reactions in living organisms
- Mainly for energy generation


> Other purposes:

- Synthesis of building blocks
- Synthesis of macromolecules
- Degradation of biomolecules

> Bioenergetics: Energy transformations in the cell

Why Do Chemical Reactions Occur? Concept of Free Energy, *Gibbs Equation*

Free-energy change; with respect to its temperature
 Enthalpy; Entropy; Exergonic vs. endergonic; spontaneity
 The concept of activation energy

(a) An exergonic reaction

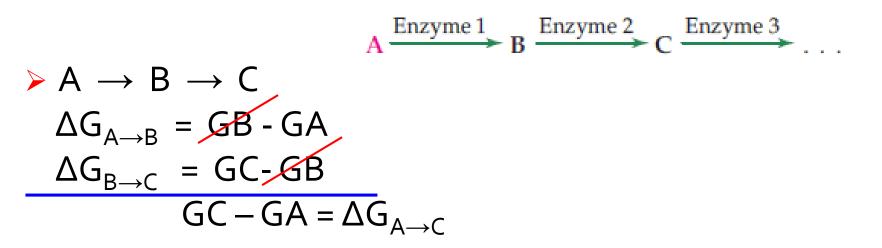
(b) An endergonic reaction

Temperature

Entropy change

(in kelvins)

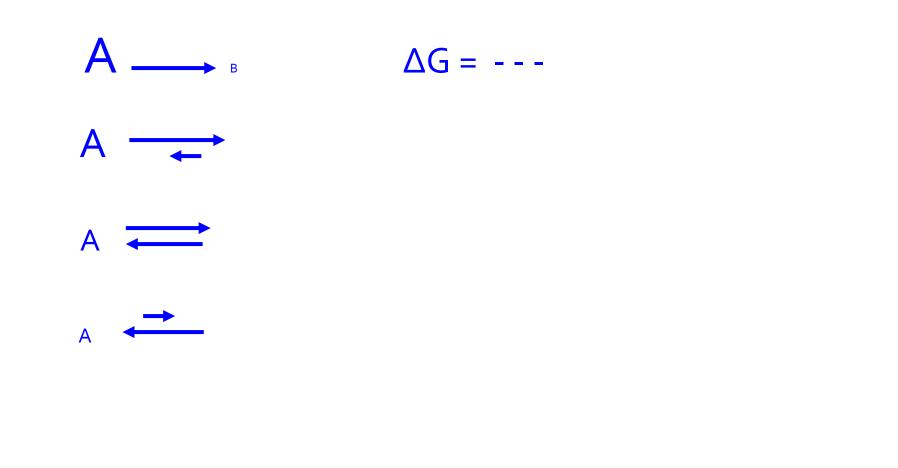
Heat of reaction


 $\Delta G = \Delta H - T \Delta S$

The different free energy terms

- $> \Delta G$ = the free energy difference of a system at any condition
- ΔG° = the free energy difference of a system at standard conditions (25C° & 1 atmospheric pressure, 1M concentration of reactants & products, pH = 7)
- > Which one of these terms determine the feasibility the reaction?
- > ΔG depends only on initial state and final state of biochemical pathways

∆G is a state function?!

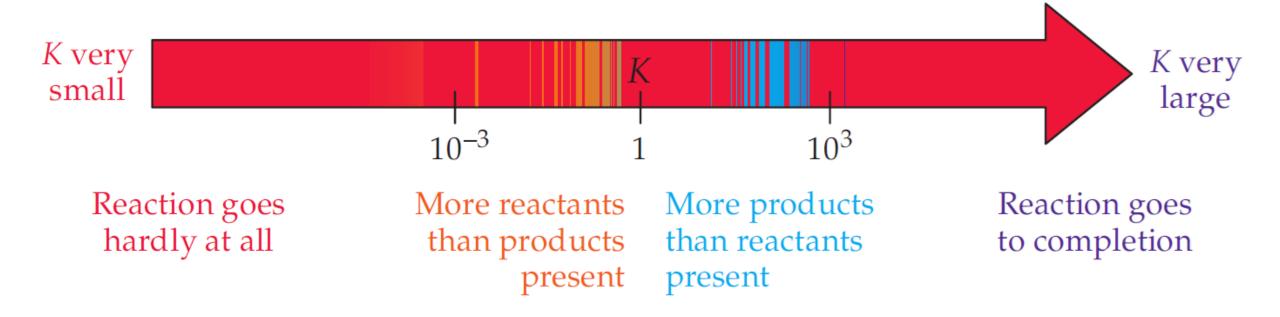

 $> \Delta G$ is not affected by the mechanism of the reaction

Combustion of glucose in calorimeter
 Glucose + O₂ → CO₂ + H₂O
 $\Delta G = -680$ kcal/mol
 In the cell

Glucose $\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow CO_2 + H_2O \quad \Delta G = -680 \text{ kcal/mol}$

∆G is affected by concentration

Standard free energy change ΔG°


Concentrations of reactants and products = 1 mole/L

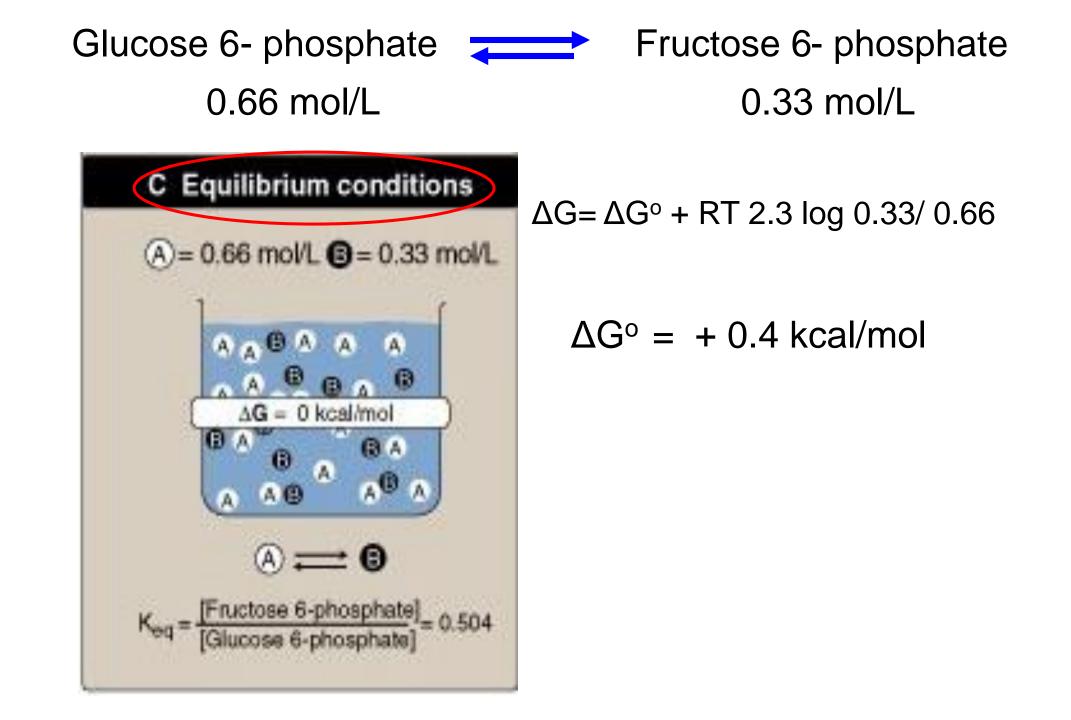
•
$$\Delta G = \Delta G^{\circ} + RT \ln \frac{[Products]}{[Reactants]}$$

• $\Delta G = \Delta G^{\circ} + RT 2.3 \log \frac{[Products]}{[Reactants]}$

Reversible Reactions & Chemical Equilibrium

- > What is a reversible reaction?
- What is the chemical equilibrium? Chemical equilibrium is an active, dynamic condition
- > At equilibrium, are concentrations equal?

Standard free energy change (ΔG°) and equilibrium constant Keq


K_{eq} is obtained by dividing [products] by [reactants] when the reaction reaches equilibrium

$$K_{eq} = \frac{[Products]}{[Reactants]}$$

At equilibrium

 $O = \Delta G^{\circ} + RT \ln K_{eq}$

 $\Delta G^{\circ} = - RT \ln K_{eq}$ • At standard conditions $\Delta G = \Delta G^{\circ} + RT 2.3 \log 1$ $\Delta G = \Delta G^{\circ}$

Glucose 6- phosphate _____ Fructose 6- phosphate

A Nonequilibrium conditions $\Delta G^{\circ} = + 0.4 \text{ kcal/mol}$ (A) = 0.9 mol/L (B) = 0.09 mol/L $\Delta G = \Delta G^{\circ} + RT 2.3 \log 0.09/0.9$ A A 4 A (B) A $\Delta G = -0.96$ kcal/mol $\Delta G = -0.96$ **B**IA A A A A A A Glucose 6-P Fructose 6-P

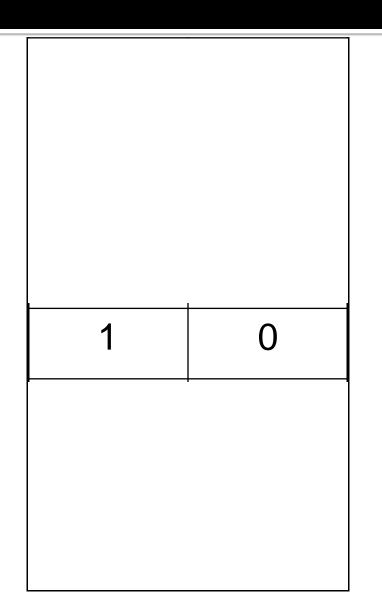
Glucose 6- phosphate Fructose 6- phosphate 1 mol/L 1 mol/L

B Standard	B Standard conditions	
(A) = 1 moVL	3 = 1 mol/l	
1		
@A @ A	6 A B A	
$\Delta G = \Delta G^{\circ} =$	+0.4 kcal/mol)	
OA® (A	
0 0	A B A	
A NO		
۵ 🖥	≓ 0	

 $\Delta G = \Delta G^{\circ} + RT 2.3 \log 1/1$

 $\Delta G = \Delta G^{\circ}$

For a reaction $\mathbf{A} + \mathbf{B} \leftarrow \mathbf{F} \mathbf{C} + \mathbf{D}$ $\Delta \mathbf{G} = \Delta \mathbf{G}^{\circ} + \mathbf{RT} \ln \left(\frac{[\mathbf{C}] [\mathbf{D}]}{[\mathbf{A}] [\mathbf{D}]} \right)$


> At equilibrium, $\Delta G=o$ \succ Can a reaction has a + ΔG° & still be favorable?

K' _{eq}	<mark>∆G</mark> °' kJ/mol	Starting with 1 M reactants & products, the reaction:
10 ⁴	- 23	proceeds forward (spontaneous)
10 ²	- 11	proceeds forward (spontaneous)
$10^{0} = 1$	0	is at equilibrium
10 ⁻²	+ 11	reverses to form "reactants"
10 ⁻⁴	+ 23	reverses to form "reactants"

$$\Delta \mathbf{G} = \Delta \mathbf{G}^{\circ} + \mathbf{RT} \ln \left(\frac{[\mathbf{C}] \ [\mathbf{D}]}{[\mathbf{A}] \ [\mathbf{B}]} \right)$$
$$\mathbf{0} = \Delta \mathbf{G}^{\circ} + \mathbf{RT} \ln \left(\frac{[\mathbf{C}] \ [\mathbf{D}]}{[\mathbf{A}] \ [\mathbf{B}]} \right)$$
$$\Delta \mathbf{G}^{\circ} = -\mathbf{RT} \ln \left(\frac{[\mathbf{C}] \ [\mathbf{D}]}{[\mathbf{A}] \ [\mathbf{B}]} \right)$$
$$defining \mathbf{K'}_{eq} = \left(\frac{[\mathbf{C}] \ [\mathbf{D}]}{[\mathbf{A}] \ [\mathbf{B}]} \right)$$
$$\Delta \mathbf{G}^{\circ} = -\mathbf{RT} \ln \mathbf{K'}_{eq}$$

ea

ΔG^{o} and K_{eq}

How much change in delta G compared to changes in Keq

If
$$K_{eq} = 1$$
, then $\Delta G^o = 0$

If Keq > 1, then $\Delta G^{\circ} < 0$

If Keq < 1, then $\Delta G^{\circ} > 0$

- When a stress is applied to a system at equilibrium, the equilibrium shifts to relieve the stress
- Stress: any change that disturbs the original equilibrium

Effect of Changes in Concentration

What happens if a reactant/product is continuously supplied/ removed?
 Metabolic reactions sometimes take advantage of this effect

Effect of Changes in Temperature

 Endothermic/exothermic are favored by increase/decrease in temperature, respectively.

Effect of a catalyst on equilibrium

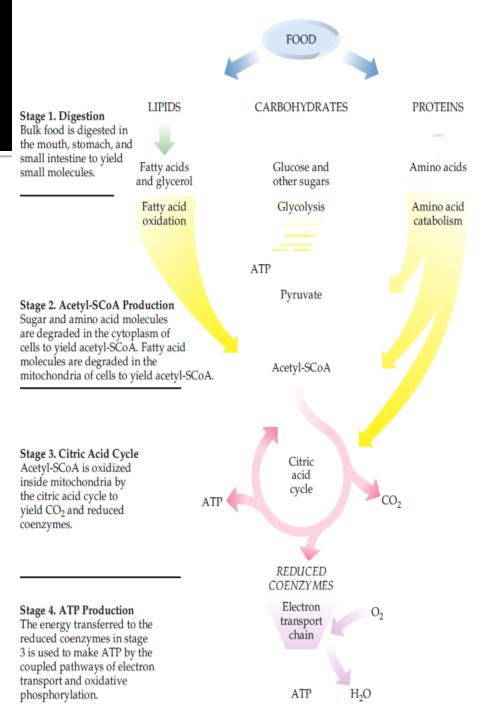
The energy machinery of the cell

Prokaryotic cells vs. eukaryotic cells

- The mitochondria (singular, mitochondrion) (90% of the body's energy ATP)
- The number of mitochondria is greatest in eye, brain, heart, & muscle, where the need for energy is greatest
- The ability of mitochondria to reproduce (athletes)

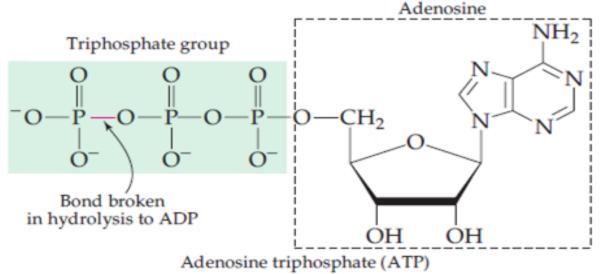
Maternal inheritance

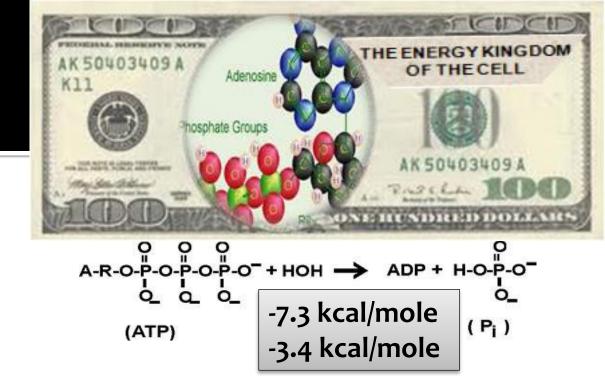
Stages of Energy Production


Stage 1 (Digestion):

- Mouth, stomach, & small intestine
- Carbohydrates to glucose & other sugars
- ✓ Proteins to amino acids
- Triacylglycerols to glycerol plus fatty acids

Acetyl group


-[Coenzyme A]


- From there to blood
- Stage 2 (Acetyl-coenzyme A)
- > Stage 3: citric acid cycle
- Stage 4: electron transfer chain & oxidative phosphorylation

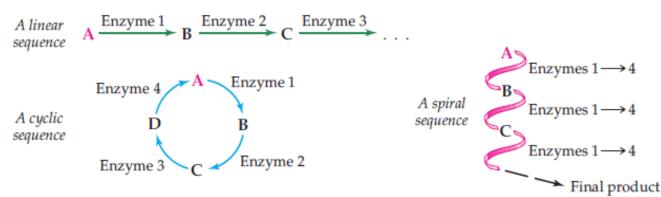
- ATP is the energy currency of the cell
- > What is a high energy molecule?
- > Why ATP?
 - Has an intermediate energy value, so can be coupled

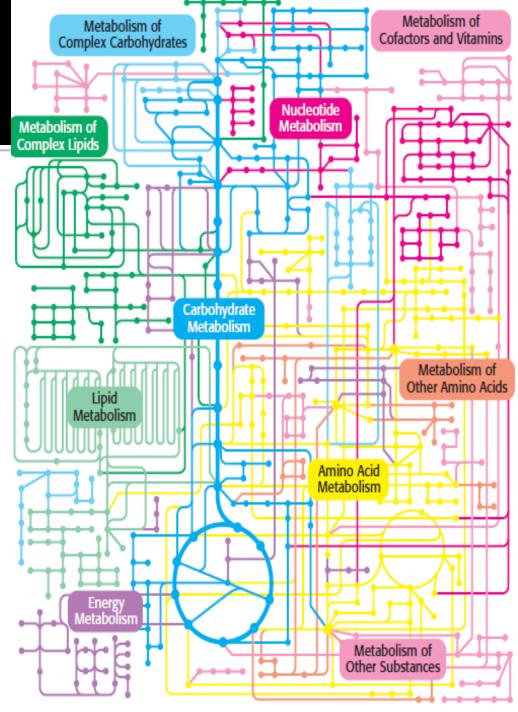
Compound +H ₂ O	Product + phosphate	ΔG°
Phosphoenol pyruvate	Pyruvate	-14.8
1,3 bisphosphoglycerate	3 phosphoglycerate	-11.8
Creatine phosphate	Creatine	- 10.3
ATP	ADP	- 7.3
Glucose 1- phosphate	Glucose	-5.0
Glucose 6- phosphate	Glucose	-3.3

Is ATP a good long-term energy storage molecule?

As food in the cells is gradually oxidized, the released energy is used to re-form the ATP so that the cell always maintains a supply of this essential molecule

ATF	, 			
Energy production Carbohydrate Lipid Protein	Energy Utilization Biosynthesis of macromolecules Muscle contraction Active ion transport Thermogenesis			
ADP + P 2ADP				
Adenylate kinase (myokinase)				
ATP + AMP				

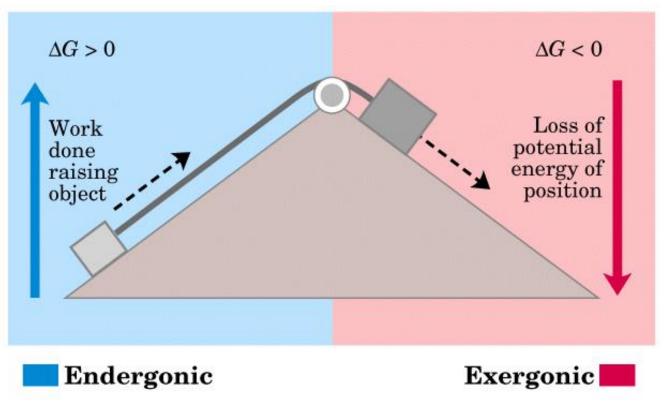

Tissue	ATP turnover (mole/day)
Brain	20.4
Heart	11.4
Kidney	17.4
Liver	21.6
Muscle	19.8
Total	90.6



90.6 * 551 (g/mole) = 49,920 g ATP

Biochemical (metabolic) pathways

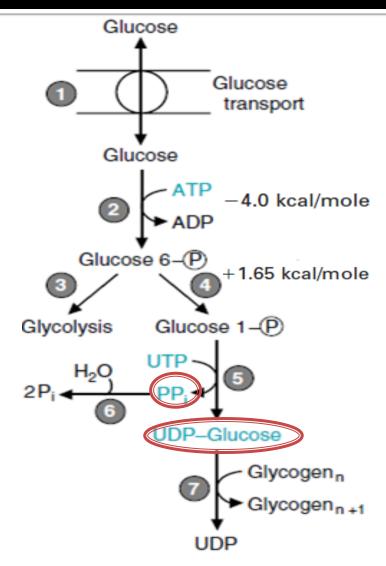
- > Are <u>interdependent</u>
- > Are subjected to thermodynamics laws
- Their activity is coordinated by sensitive means of communication
- Allosteric enzymes are the predominant regulators
- Biosynthetic & degradative pathways are <u>almost</u> <u>always distinct</u> (regulation)
- Metabolic pathways are linear, cyclic or spiral


Exergonic reactions in Biochemistry

- Complex structures
 simple structures
 - Proteins \rightarrow amino acids
 - Starch \rightarrow n glucose
 - $glucose + O_2 \rightarrow CO_2 + H_2O$
- More specifically

 ✓ Hydrolysis reactions
 ✓ Decarboxylation reactions (release of CO₂)
 pyruvate (C3) → acetyl-CoA(C2) +CO₂
 ✓ Oxidation with O₂

How do our cells get energy for unfavorable biochemical work?


The concept of coupling

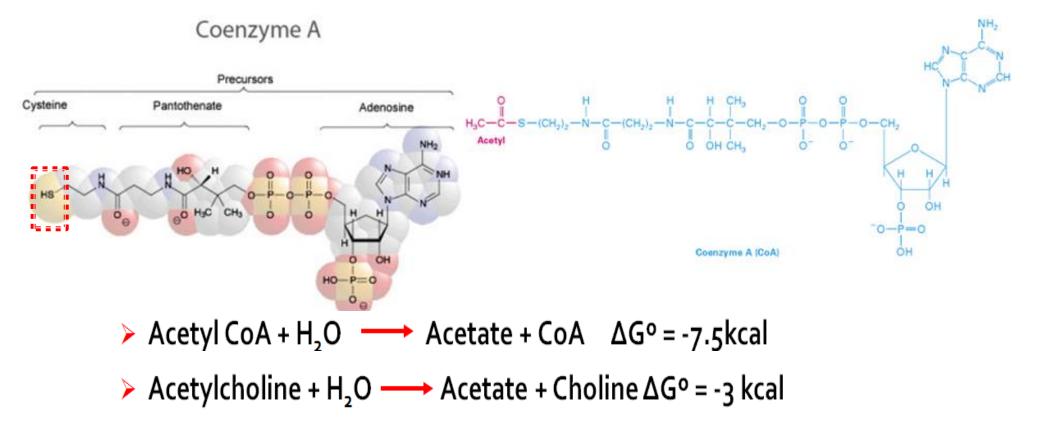
How do our cells get energy for unfavorable biochemical work?

- I. ΔG° Values are additive
 - i. Through phosphoryl transfer reactions:
 - ✓ Step 2 (+3.3 vs. -4 kcal/mole)
 - ✓ Step 2 + 4 = -2.35 kcal/mole
 - ✓ The net value for synthesis is irrelevant to the presence or absence of enzymes
 - ii. Activated intermediates (step 4 is facilitated by steps 5&6)
- ΔG Depends on Substrate and Product
 Concentration (step 4 has a ratio of 6/94; +1.65 kcal/mol, if 3/94; -0.4kcal/mol)

How do our cells get energy for unfavorable biochemical work?

 Activated Intermediates other than ATP; UTP is used for combining sugars, CTP in lipid synthesis, and GTP in protein synthesis

$$H_{2}\dot{N} = C \begin{pmatrix} 0 \\ N \sim P - O \\ 0^{-} \\ N - CH_{3} \\ CH_{2} \\ COO^{-} \end{pmatrix}$$


С С ~ ОРО²⁻ Н-С-ОН СН₂ОРО²⁻

1,3-Bisphosphoglycerate

Creatine phosphate

The acetyl CoA as an example

Coenzyme A is a universal carrier (donor) of Acyl groups Forms a thio-ester bond with carboxyl group

THERMOGENESIS

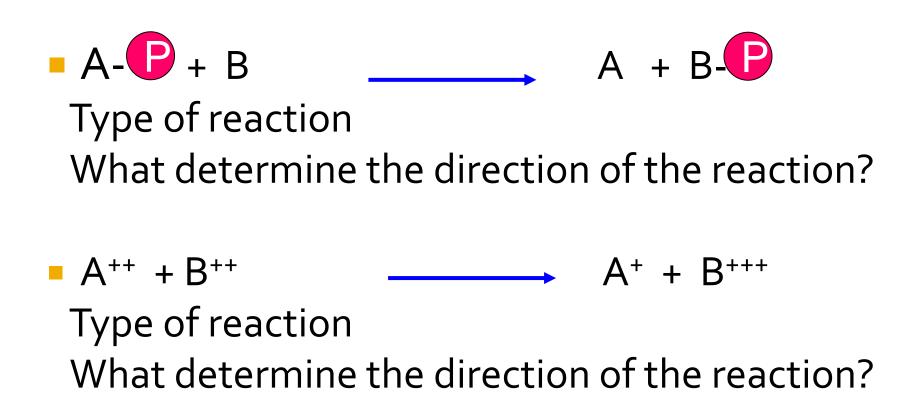
- The first law of thermodynamics
- > Heat production is a natural consequence of "burning fuels"
- Thermogenesis refers to energy expended for generating heat (37°C) in addition to that expended for ATP production
- Shivering thermogenesis (ATP utilization): responding to sudden cold with asynchronous muscle contractions
- > Non-shivering thermogenesis (ATP production efficiency)

Oxidation-Reduction reactions (Redox)

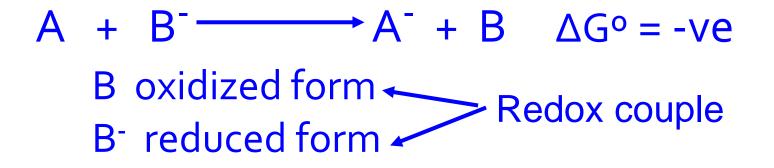
> Oxidation:

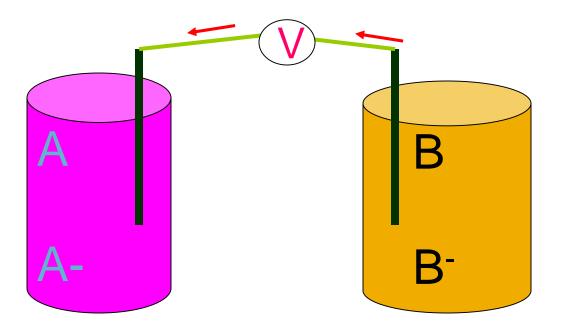
- Gain of Oxygen
- Loss of Hydrogen
- Loss of electrons

> Reduction:


Gain of Hydrogen

D:H


D


- Gain of electron
- Loss of Oxygen
- E = redox Potential: it is a POTENTIAL ENERGY that measures the tendency of oxidant/reductant to gain/lose electrons, to become reduced/oxidized
- Electrons move from compounds with lower reduction potential (more negative) to compounds with higher reduction potential (more positive)
- > Oxidation and reduction must occur simultaneously

Reduction potential

Reduction potential and direction of the reaction

Reduction potential and direction of the reaction

X⁻ has higher tendency to loose electrons than H₂ does

→

Negative reduction potential

Reduction potential: Ability to accept electrons

Oxidized + e ⁻	→ Reduced	$\Delta E^{o}(V)$
Succinate	α ketoglutarate	- 0.67
Acetate	Acetaldehyde	- 0.60
NAD+	NADH	- 0.32
Acetaldehyde	Ethanol	- 0.20
Pyruvate	Lactate	- 0.19
Fumarate	Succinate	+ 0.03
Cytochrome+3	Cytochrome+2	+ 0.22
oxygen	water	+ 0.82

Calculation of ΔG° from ΔE°

- $\Delta G^{\circ} = n f \Delta E^{\circ}$
 - F = Farady constant = 23.06 kcal/Volt
- Calculate \Delta G^o of the following reaction

 $NADH + 1/2O_2 \longrightarrow NAD^+ + H_2O$

NADH
$$\longrightarrow$$
 NAD+ + 2e⁻ ΔE^{o} = +0.32 V
O + 2e⁻ \longrightarrow O²⁻ ΔE^{o} = +0.82 V

 $\Delta G^{\circ} = -52.6 \text{ kcal/mol}$

Oxidation-Reduction reactions (Redox)

- $\blacktriangleright \Delta E = E_A E_D$
- $\triangleright \Delta E$ = Redox difference of a system in any condition
- ΔE^o = Redox difference of a system in standard condition (25C^o and 1 atmosphere pressure, pH = 7)

> <u>Does ΔE determine the feasibility of a reaction?</u>

 $\succ \Delta G^{\circ} = -nf\Delta E^{\circ}$

In other words; energy (work) can be derived from the transfer of electrons Or
 Oxidation of food can be used to synthesize ATP

Oxidation-Reduction reactions (Redox)

> Always involve <u>a pair of chemicals</u>: an H: electron donor and an electron acceptor C-NH₂ (Food vs. NAD⁺) Nicotinamide -O-P-O-CH NAD⁺ vs. FAD NAD⁺ vs. NADP⁺ (fatty acid synthesis and HO OH detoxification reactions) NH₂ H₃C H₂C -0-P-0-II NAD⁺ 0 NH_2 H - C - OH $\mathbf{R} = \mathbf{H}$ Riboflavin H-C-OH HÔ ÔR NADP⁺ H-C-OH -O-P-O-H₂C 0

HO

OH

 O^{-}