


Classification and identification of bacteria

3.biochemical rxns

<mark>rxn</mark>		<mark>method</mark>	Types of bacteria	+ve test	-ve test
1.	sugar fermentation with Durham tube	Detection of the ability to ferment Glu and convert the product (pyruvate)to a gas	Identification of gram-ve enteric bacteria	Yellow either with the only acid product or acid and gas	Pink (no fermentation)
2.	lactose fermentation in MacConkey agar		E.coli and klebsiella vs. Salmonella and shigella	Rose pink for E.coli and klebsiella	Pale colonies for salmonella and shigella
3.	indole	AA (Trp)→indole then the addition of Kovacs reagent to detect	E.coli and klebsiella	Pink for E.coli	Absence of colour for klebsiella
4.	H2S production	Sulfur will be reduced to H2S by the microbe using Fe for detection founding in	Enterobacteriacea e (enterics) and gram bacilli especially for	Black for francisella and salmonell a	No black for proteus

5.	MR (methyl red rxn)	(SIM, TSIA)medias Glu fermentation→acid → lowering Ph	salmonella, Francisella and proteus species E.coli and klebsiella	Red for E.coli	Yellow, orange for klebsiella
6.	Voges Proskauer(VP)	Glu fermentation→acety I methyl carbinol →detected by KOH	E.coli and klebsiella	Pink for klebsiella	No pink for E.coli
7.	Citrate utilization	The ability for citrase production detected by alkalinity, (citrase hydrolyses citrate to oxaloacetic acid and acetic acid) using Simmons agar	Member of Enterobacteriacea e	blue	green
8.	oxidase	Production of oxidase enzyme detected by drops of colourless oxidase reagents	Enterobacteriacea e and pseudomonas	Deep purple for Ps. Like Ps. aeroginos a	Colourless for Shigella dysenteriae
9.	catalase	H2O2 converts by catalase to O2 as gas bubbles	Staph. And Strep.	Staph bubbles	Strep. No bubbles
10.	coagulase	Fibrinogen converts to fibrin forming clots by coagulase	Staph. Aureus from other -ve coagulase staph.	Clot Staph. Aureus	No clot
11.	urease	Urea produces NH3 by urease, increasing alkalinity, Converting yellow to pink	Proteus vulgaris and E.coli	Red pink For proteus vulgaris	No pink for E.coli

*NOTE:

E.coli is -ve in VP and urease tests(no pink)

*modern systems: API, Vitec system

PAST PAPERS:

Which one turns hydrogen peroxide into water and oxygen

- a-streptococcus pyogenes
- b-streptococcus "another type"
- c- staphylococcus epidermidis
- d-enterococcus
- e-none of the above
- One of the following is both an enrichment and differential ulture media:
 - A-Blood agar
 - B-MacConkey agar
 - C-Mannitol salt agar
 - D-Amies medium

Which of the following will most likely cause a skin infection?

- a-Staphylococcus
- b-Treponemas
- c-Nocardia
- d-Borrelias

Which of the following method is preferred to be used to sterilize solutions nat likely to be damaged by heat?

- a. Filtration
- b. Boiling
- c. Inspissation
- d. Pasteurization
- e. Autoclaving

Which of the following tests is used for identification and differentiation of nembers of Enterobacteriaceae from other gram negative bacilli?

- a. Oxidation test
- b. Methyl Red reaction
- c. Hydrogen sulfide production test
- d. Production of Indole
- e. Catalase test

BEST WISHES

С

Α

A

C A