Nafith Abu Tarboush DDS, MSc, PhD <u>natarboush@ju.edu.jo</u> <u>www.facebook.com/natarboush</u>

Oxidative Phosphorylation

The Mitochondria

- OMM: <u>permeable</u> to small molecules (MW<5,000) & ions, <u>porins</u> (transmembrane channels)
 Intermembrane space
- > IMM: <u>impermeable</u> even to H+; specific transporters
- IMM bears the components of the respiratory chain and the ATP synthase
- Matrix: contains pyruvate dehydrogenase complex & TCA cycle enzymes, fatty acid β-oxidation pathway, and the pathways of amino acid oxidation
- In other words: <u>matrix contains all pathways of fuel oxidation</u> <u>except glycolysis (cytosol)</u>

Mitochondrial Membranes

✓ Inner membrane: ✓ 22% cardiolipin ✓ No cholesterol ✓ Outer membrane: ✓ Similar to cell membrane ✓ Less than 3% cardiolipin ✓ 45% cholesterol

TABLE 20.3: Location of enzymes in mitochondria Mitochondria, outer membrane: Monoamino oxidase Acyl CoA synthetase Phospholipase A2 In between outer and inner membrane: Adenylate kinase Creatine kinase Inner membrane, outer surface: Glycerol-3-phosphate dehydrogenase Inner membrane, inner surface: Succinate dehydrogenase Enzymes of respiratory chain Soluble matrix: Enzymes of citric acid cycle Enzymes of beta oxidation of fatty acid

The oxidative phosphorylation, Where are we?

Stages: Digestion; Acetyl-CoA, TCA, OxPhos

Oxidative phosphorylation (OxPhos)

- \succ Generation of ATP aided by the reduction of O_2
- Peter Mitchell (1961): the chemiosmotic theory
- Oxidative phosphorylation have 3 major aspects:
 - (1) It involves <u>flow of electrons</u> through a chain of membrane-bound carriers (<u>prosthetic groups</u>)
 - (2) The free energy available (exergonic) is <u>coupled to transport protons across</u> a proton-impermeable membrane
 - (3) The transmembrane <u>flow of protons</u> down their concentration gradient provides the free energy for synthesis of ATP (ATP synthase)

Oxidative phosphorylation (OxPhos)

Types of electron transfer (ET) through the electron transport chain (ETC)

- > 3 types of ET occur in OxPhos:
 - Direct ET, as in the reduction of Fe⁺³ to Fe⁺²
 - ✓ Transfer as a hydrogen atom {(H⁺) + (e⁻)}
 - Transfer as a hydride ion (:H⁻)

Other electron-carrying molecules "Ubiquinone"

- > Also called coenzyme Q, or Q
- Lipid-soluble benzoquinone with a long isoprenoid side chain
- Small & hydrophobic (freely diffusible)
- Carries electrons through the IMM
- Can accept either 1 e- or 2 e-
- Act at the junction between a 2-electron donor and a 1electron acceptor
- Sometimes prescribed for recovering MI patients

Other electron-carrying molecules "Cytochromes"

- Proteins with characteristic strong absorption of visible light (Fe-containing heme prosthetic groups)
- Classification based on light absorption
- Mode of binding (a, b, c)
- Mitochondria contain three classes o f cytochromes (a , b, & c)

Other electron-carrying molecules "Cytochromes"

- Light absorption: Each cytochrome in its reduced (F⁺²) state has 3 absorption bands in the visible range
- α band : near 600 nm in type a; near 560 nm in type b, &
 near 550 nm in type c
- Some cytochromes are named by the exact α band wavelength:

✓ Cytochrome b₅₆₂; Cytochrome c₅₅₀; Cytochrome c₅₅₁

- Heme can carry one electron
- ΔE^o depends on the protein
- Cytochromes a, b & c are transmembrane (c is the exception)

Other electron-carrying molecules Iron-Sulfur Clusters

Requirements of OxPhos

- Redox reaction: electron donor (NADH or FADH2) & electron acceptor (O2)
- An intact IMM

ET to O₂, how does the process occurs? "The chemi-osmotic theory"

Oxi–Red Components of the ETC "NADH Dehydrogenase" – Complex I

- NADH-Q oxidoreductase
- More than 25 polypeptide chain
- > A huge flavoprotein membrane-spanning complex
- The FMN is tightly bound
- Seven Fe-S centers of at least two different types
- > Drop in energy ≈ 13 to 14 kcal
- > Binds NADH & CoQ
- <mark>≻ 4</mark> H⁺

FMN

CHOH

CH_0P03

CHOH CH₂OPO3

Oxi–Red Components of the ETC "Succinate Dehydrogenase" – Complex II

- Succinate Dehydrogenase & other flavoproteins
- TCA cycle
 - ETF-CoQ oxidoreductase (ex. fatty acid oxidation)

Oxi–Red Components of the ETC "Succinate Dehydrogenase" – Complex II

 Substrates oxidized by FADlinked enzymes bypass complex-I
 Three major enzyme systems:
 Succinate dehydrogenase
 Fatty acyl CoA dehydrogenase
 Mitochondrial glycerol phosphate dehydrogenase

Oxi–Red Components of the ETC "Cytochrome *bc*1" – Complex III

- > Also called: Q-cytochrome c Oxidoreductase
- Catalyzes the transfer of electrons from QH2 to cytochrome c
- 11 subunits including two cytochrome subunits
- Contains iron sulfur center
- Contain three heme groups in two cytochrome subunits
- b_L and b_H in cytochrome b; c type in cytochrome c1
- Contain two CoQ binding sites
- ≻ 4H+

The Q-cycle

 $QH_2 + 2 \text{ cyt } c_1 \text{ (oxidized)} + 2H_N^+ \longrightarrow$ $Q + 2 \operatorname{cyt} c_1 (\operatorname{reduced}) + 4 H_P^+$ Intermembrane space (P side) Cyt c Cyt c $2H^+$ 2HHeme c_1 $Cyt c_1$ QH, Heme b_1 Heme b_{H-} OH. Matrix (N side) Cytochrome b $2H^{+}$ $QH_2 + Q^- + 2H_N^+ + cyt c_1 \text{ (oxidized)} \longrightarrow$ $QH_2 + Q + cyt c_1 (oxidized) \longrightarrow$ $QH_2 + 2H_P^+ + Q + cyt c_1$ (reduced) $^{\circ}Q^{-} + Q + 2H_{P}^{+} + \text{cyt } c_{1} \text{ (reduced)}$

Net equation: $QH_2 + 2 \operatorname{cyt} c_1(\operatorname{oxidized}) + 2H_N^+ \longrightarrow Q + 2 \operatorname{cyt} c_1(\operatorname{reduced}) + 4H_P^+$

- Partial reduction is hazardous
- Accommodates the switch between 2e-/1e-
- Explains the measured stoichiometry of 4 H+/2e-

Oxi–Red Components of the ETC "Cytochrome c oxidase" – Complex IV

- Passes electrons from Cytocrome c to O2
- Contains cytochrome a and a3
- Contains two copper sites
- Contains oxygen binding sites
- O2 must accept 4 electrons to be reduced to 2 H2O (2H+/2e-)
- > Cytochrome c is one electron carrier

 $Cyt c_{red} + 4H^{+} + O2 \rightarrow Cyt c_{ox} + 2H2O$

- Cytochrome oxidase has a much lower Km for O2 than myoglobin (hemoglobin, myoglobin, complex IV)
- Partial reduction of O2 is hazardous

The right arrangement How can we prove it?

	↓		Redox reaction (half-reaction)	<i>E</i> '° (V)
-0.	3 FMN		$2H^+ + 2e^- \longrightarrow H_2$	-0.414
			$NAD^+ + H^+ + 2e^- \longrightarrow NADH$	-0.320
	*	¥	$NADP^+ + H^+ + 2e^- \longrightarrow NADPH$	-0.324
	FeS		NADH dehydrogenase (FMN) + $2H^+$ + $2e^- \longrightarrow$ NADH dehydrogenase (FMNH ₂)	-0.30
	Ļ		Ubiquinone + $2H^+ + 2e^- \longrightarrow$ ubiquinol	0.045
			Cytochrome b (Fe ³⁺) + $e^- \longrightarrow$ cytochrome b (Fe ²⁺)	0.077
FAD → FeS -		+0.045	Cytochrome c_t (Fe ³⁺) + $e^- \longrightarrow$ cytochrome c_t (Fe ²⁺)	0.22
±0.0 3		+0.077	Cytochrome c (Fe ³⁺) + $e^- \longrightarrow$ cytochrome c (Fe ²⁺)	0.254
	Cyt b		Cytochrome a (Fe ³⁺) + $e^- \longrightarrow$ cytochrome a (Fe ²⁺)	0.29
	Cytu		Cytochrome a_3 (Fe ³⁺) + $e^- \longrightarrow$ cytochrome a_3 (Fe ²⁺)	0.35
	↓		$\frac{1}{2}O_2 + 2H^+ + 2e^- \longrightarrow H_2O$	0.8166
	ubiquinone		+0. 29 +0. 55	
	★			
	FeS —	\blacktriangleright Cyt c ₁ —	\rightarrow Cyt c \rightarrow Cyt a \rightarrow Cyt a_3	
		+0. 22	+0.25	
			$1/2 O_2 + 0.82$	

NADH \rightarrow Q \rightarrow cytochrome b \rightarrow cytochrome c1 \rightarrow cytochrome c \rightarrow cytochrome a \rightarrow cytochrome a3 \rightarrow O2

The right arrangement How can we prove it?

NADH \rightarrow Q \rightarrow cytochrome b \rightarrow cytochrome c1 \rightarrow cytochrome c \rightarrow cytochrome a \rightarrow cytochrome a3 \rightarrow O2

> 2. Reduction of the entire ETC with no O2

> 3. Addition of inhibitors

Pumping of Protons

For every 2 electrons passing:

4H⁺ (complex I); 0H⁺ (complex II); 4H⁺ (complex III), 2H⁺ (complex IV)