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ATP Synthase

> Fa:
>"y" subunit: rotates
>"“B" subunit: binds
>"“o"” subunit: structural
>3 conformations: tight (T), loose
(L), open (O)
> Fo:
>"a" subunit: point of entry & exit
>"“c"” subunit rotates
>4H+/ATP
> Can run backwards
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Energy yield from the ETC

> NADH, -53 kcal, ATP?

> FADH2, -41 kcal, ATP?

> AG® iIs so negative, never reversible

> ATP machine efficiency, (anions, Ca*?, heat, phosphate, substrates)
> Electron transport chain is our major source of heat
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Regulation — the need for ATP

> What OxPhos needs? (NADH, O2, ADP, and Pi)

> In skeletal muscles, 20% drop in ATP concentration

> In the heart, Ca*? activates TCA enzymes for extra push (NADH, ATP), no drop

> ET is tightly coupled to phosphorylation (simultaneously)

> ADP is the most important factor in determining the rate

> The regulation of the rate of oxidative phosphorylation by the ADP level is called
respiratory control
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v'Cyanoglycosides are present in edible plant pits: il b agc
(e.g.amygdalin)

» Can occur at any stage
> Specific inhibitors:

v'Oligomycin prevents the influx of H+ through ATP synthase

Rotenone (insecticide) & Amytal (sedative) Complex |
Antimycin A (antibiotic) Complex Ili
Cyanide (CN-), Azide (N3-), & (CO) Complex IV

Oligomycin (antibiotic) Complex IV . BREARING usws_"
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Specific Inhibitors of ETC — Doxorubicin

MECHANISM EFFECT
v'Binds to cardiolipin v'Decreased ATP levels
v'Inhibits succinate oxidation v"Swollen mitochondria
v'Inactivates cytochrome v'Decreased mitochondrial

oxidase ability to sequester calcium

v'Interacts with CoQ Ions
v Affects ion pumps v'increased free radicals leading
v Inhibits ATP synthase to mitochondrial membrane

damage



Regulation — Inhibition
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Regulation — Uncoupling

Reqgulated - Uncoupling proteins (UCPs)

> Short-circuiting ATP synthase
> UCPa (thermogenin):

v Brown adipose tissue, non-shivering thermogenesis
v" Infants: neck, breast, around kidneys

v" Fatty acids directly activates UCPa
> UCP2 (most cells); UCP3 (skeletal muscle); {UCP4, UCPs5} (brain)
> Obesity tendency in some populations
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Regulation — Uncoupling

Unregulated — chemical uncouplers

What is uncoupling?

How does it occur? Dissipation of PMF
What is the result? O2N— 27=—0
Is it physiological or not?
2,4-dinitrophenol (DNP) & other acidic 2,4-Dinitrophenol (DNP)
aromatic compounds

What changes happen? 1 O2 consumption, Matrix
1 NADH oxidation e Y

> Soviet soldiers were given DNP, FDA banned . :“DEH ; z”“ﬂ
NO, NO
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High [H*] causes outside Low [H*] inside causes protons
protons to bond to DNP molecules 1o dissociate from DNP molecules
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OxPhos Diseases (Genetic)

> A. Mitochondrial DNA and OXPHOS Diseases
v"Small (126,569) base pair, double-stranded, circular DNA
v"Encodes 13 subunits: 7 (1), 2 (11l), 3 (1V), 2 (Fo)

v" Also encodes necessary components for translation of its own mRNA: a
large and small rRNA and tRNAs

v"Maternal inheritance, replicative segregation & heteroplasmy
v Accumulation of somatic mutations with age
v"Highest ATP demands: CNS, heart, skeletal muscle, and kidney, liver



OxPhos Diseases (Genetic)

> B. Nuclear Genetic Disorders of Oxidative Phosphorylation
v'1,000 proteins
v Usually autosomal recessive
v Expressed in all tissues
v Phenotypic expression with high ATP demand



OxPhos Diseases (Genetic)
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Disorders due to mutations in mtDNA-encoded proteins
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Disorders due to mutations in nDNA-encoded proteins



Some NADH producing enzymes

Box 37.3: NAD* dependent enzymes

1. Lactate dehydrogenase (lactate — pyruvate) (see Fig. 9.14)

2. Glyceraldehyde-3-phosphate dehydrogenase (glyceralde-
hyde-3-phosphate — 1,3-bisphosphoglycerate) (see Fig.9.10)

3. Pyruvate dehydrogenase (pyruvate — acetyl CoA) (see
Fig.9.22)

4. Alpha ketoglutarate dehydrogenase (alpha ketoglutarate —
succinyl CoA) (see Fig.19.2)

5. Beta hydroxyacyl CoA dehydrogenase (beta hydroxyacyl CoA
— beta ketoacyl CoA (see Step 3, Fig.12.9)

6. Glutamate dehydrogenase (Glutamate — alpha ketoglutarate
(see Fig.15.9)




Cytoplasm Mitochondria
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Mitochondrial shuttling

+ NADH
> Malate-Aspartate shuttle NARHE
. T Oxaloacetate Oxaloacetate
> Operates mainly in liver, Al
- Gl

kidney and heart " dsh @K

> 2 membrane carriers & 4 akG “| =~ “s
Aspartate e——te—————t—__ Aspartate
enzymes B

> Readily reversible (vs. Glycerol
3-phosphate ShUttIE) Aspartate > Oxaloacetate
> NADH can be transferred only I /7~ O\

NADH + H* NAD™"
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Malate

if the NADH/NAD+ ratio is rietoglutarate. Clutamate
higher in the cytosol thanin =~ '
the mitochondrial matrix
> Exchange of key
intermediates between
mitochondria & cytosol
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Mitochondrial shuttling systems

“Cytosolic NADH"

> Glycerol 3-phosphate shuttle
> In skeletal muscle and brain NAD* NADH + H
> Glycolytic pathway as an example iycerol-3-pi

> How NADH passes?

. CH,OH
> ATP yield? L
Py
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Mitochondrial shuttling systems

“ATP/ADP"”

> ATP-ADP Translocase (also called ytosclic sids
adenine nucleotide translocase or L3 e
ANT) | ADE. ADP :
> The flows of ATP and ADP are i H l i it | L—) il s
coupled (ADP enters only if ATP | E % i _q JFFL
exits, and vice versa) - T T

Matrix side

> Highly abundant (14% of IMM ‘\{ N e

proteins)

> Contains a single nucleotide-binding

site (alternates) V —
Similar affinity to ATP and ADP ' < 7N\ -
Endergonic (25% of ETC) : | [ A || [ \\L__g

> Inhibition leads to subsequent
inhibition of cellular respiration

r___
-

A%

A%




