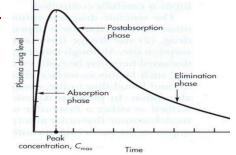
Pharmacokinetics (Equation Sheet)

-Henderson-Hasselbalch Equation:

$$log \frac{[porotonated]}{[unprotonated]} = pKa - pH$$

$$Flux = C_1-C_2 x \frac{(Area \times Permeability coefficient)}{Thickness}$$

-Bioavailability (F):


$$F = f.(1-ER)$$

F: Bioavailability

f:absorption extent

ER: extraction rate

*Can be calculated by area under the curve of Plasma conc. vs. time graph.

-Volume of Distribution (Vd):

$$Vd = \frac{\text{amount of drug in the body (total conc.)}}{\text{plasma drug conc.}}$$

Loading Volume = plasma conc. x Vd

-Drug Clearance (CL):

Total CL =
$$\frac{\text{rate of elimination}}{\text{Cp}}$$

Cp: drug plasma conc.

1) Renal Clearance (CL_R):

$$CL_R = \frac{Cu.V}{Cp}$$

Cu: urine drug conc. V: urine flow rate

Cp: drug plasma conc.

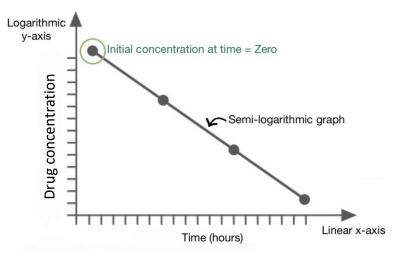
2) Hepatic Clearance (CL_H):

$$CL_H = Q.ER$$

Q:liver blood flow

ER: extraction rate of the liver

$$\Rightarrow ER = \frac{\text{liver clearance (CLH)}}{\text{liver blood flow (Q)}}$$


**derived equation

$$ER = \frac{Ci - Co}{Ci}$$

 $ER = \frac{Ci - Co}{Ci}$ C_i: drug conc. in portal vein (into the liver).

C_o: drug conc. in hepatic artery (out of liver).

First Order Elimination (Linear Pharmacokinetics)

- after 4 half-lives → steady state is achieved.
- after 1 $t_{1/2} \rightarrow 50\%$ of the steady state is achieved.

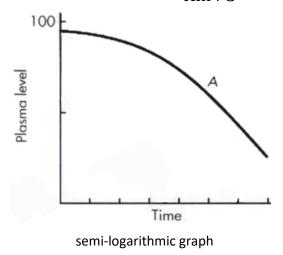
values that can be directly calculated from the graph:

1) Volume of distribution:

$$Vd = \frac{\text{total amount of drug}}{\text{initial conc.(at time=zero)}}$$

- 2) Half-life t_{1/2}
- 3) elimination rate constant (K):

by calculating the slope


or using
$$\rightarrow$$
 K * $t_{1/2}$ = 0.693

4) Drug Clearance (CL):

 \rightarrow t_{1/2}= 0.693 Vd/CL

Zero Order Elimination (Non-linear Pharmacokinetics)

• Rate of Elimination = $\frac{V \text{max .C}}{K \text{m+C}}$

Side note:

C: plasma concentration can be obtained from the graph Vmax & Km: given values from the question

half live isn't constant→ steady state can't be determined

Steady-State related calculations

-Maintenance Dose (MD):

 $MD = CL \cdot Css$

Css: target conc./ desired drug conc./ steady state conc.

*Needs to be multiplied by the dosing interval (example: every 8 h, 24h, etc....)

-Loading Dose (LD):

LD = Vd. Css

<u>Final note</u>: for all previous calculations related to pharmacokinetics consider units conversion (mL/L), (mg/g/kg), (mins/h)

Done by: Hala Zaghloul