MEASURING DISEASE OCCURRENCE INCIDENCE AND PREVALENCE (MORBIDITY MEASURES)

Dr. Sireen Alkhaldi, BDS, MPH, DrPH
Department of Family and Community Medicine
School of Medicine/ The University of Jordan
Second Semester 2022/2023

How do we measure diseases?

Four quantitative descriptors to measure disease occurrence:
$>$ Numbers

- Ratios
- Proportions
- Rates

Descripłors

Numbers: Use of actual number of events e.g 100 cases of TB in community A

Ratios: Quantifies the magnitude of one occurrence X, in relation to another event Y as X / Y
e.g Ratio of TB cases in community A to B is 1:10

Descripłors

Proportions: a ratio in which the numerator is included in the denominator
e.g proportion of TB cases in community A is 10\%

Rates: a proportion with time element
It measure the occurrence of an event overtime
e.g US measles cases in 2000/US population in 2000

Measurement of Disease Occurrence Morbidity measures

Morbidity rates are rates that are used to quantify the magnitude/frequency of diseases
Two common morbidity measures:
Incidence rates (Cumulative incidence, incidence density)
Prevalence (Period prevalence, point prevalence)

Incidence rate

The proportion of a population that develops a disease overtime
The risk/probability of an individual developing a disease overtime
The rapidity with which new cases of a disease develop overtime
The proportion of unaffected individuals who on average will contract the disease overtime
Case fatality rate and attack rate are incidence.

Number of new cases of a

Cumulative $=$ disease during a specified period Incidence Population at risk at the baseline

Cumulative Incidence

$\left.\begin{array}{l}\begin{array}{l}\text { Table 2.4. Relationship between cigarette smoking and incidence rate of stroke in } \\ \text { a cohort of } 118539 \\ \text { women }\end{array} \\ \begin{array}{llcl}\text { Smoking } \\ \text { category }\end{array} \\ \begin{array}{l}\text { Number of cases of } \\ \text { stroke }\end{array} \\ \begin{array}{c}\text { Person-years of } \\ \text { observation } \\ \text { (over 8 years) }\end{array}\end{array} \begin{array}{l}\text { Stroke incidence rate } \\ \text { (per 100 000) person- } \\ \text { years) }\end{array}\right]$

Cumulative incidence rate
$=(274 / 118539) \times 1000$
= 2.31 cases per 1000 women

Incidence Density

Other types of Incidence

\checkmark Attack rate can be calculated as the number of people affected divided by the number exposed.
It is used instead of incidence during a disease outbreak in a narrowly defined population over a short period of time (e.g. food poisoning in a party).

Case fatality is the proportion of cases with a specified disease who die within a specified time. It measures disease severity. Expressed as percentage.

Practical challenges in measuring incidence rate

1. Identification of population at risk

Population at risk constitutes all those free of the disease and susceptible to it
2. Population is not static/it fluctuates/as a result of births, deaths and migration
3. People are at risk only until they get the disease and then no more at risk

Prevalence

\square It measures the proportion of a population with a disease during a specified period or at a point in time
\square It describes current burden of disease in a population in order to facilitate planning and resource allocation.
e.g. What is the prevalence of cognitive disorder among school children in Jordan?

What is the prevalence of anxiety disorder among JU medical students?

prevalence

Measures the proportion of a population with a disease at a point in time
prevalence＝All persons with a disease／Total population

It is not a rałe，but a true proportion

Prevalence vs. Incidence

Prevalence= Incidence x duration

An increase in prevalence may not necessarily be due to an increase in incidence rate, it could be due to an increase in average duration of a disease due to decrease in death and/or recovery rates.

Prevalence = Incidence Rate \times Average Duration

If: the frequency of disease is rare (i.e., $<10 \%$ of the population has it).
\checkmark If the average duration of disease remains constant, then preventive measures that reduce the incidence of disease would be expected to result in a decreased prevalence.
\checkmark Similarly, if the incidence remained constant, then developing a cure would reduce the average duration of disease, and this would also reduce the prevalence of disease.
\checkmark In the late 1990s anti-retroviral therapy was introduced and greatly improved the survival of people with HIV. However, they weren't cured of their disease, meaning that the average duration of disease increased. As a result, the prevalence of HIV increased during this period.

Prevalence = Incidence Rate x Average Duration

\checkmark The relationship can be visualized by thinking of inflow and outflow from a reservoir. The fullness of the reservoir can be thought of as analogous to prevalence, and Raindrops might represent incidence, or the rate at which new cases of a disease are being added to the population, thus becoming prevalent cases.
\checkmark Water also flows out of the reservoir, analogous to removal of prevalent cases by dying or being cured of the disease.

Calculation ...

A survey of respiratory disease was conducted and the results are presented in the table below.
Calculate the prevalence of chronic bronchitis in each age group and in the total group.

Prevalence of chronic bronchitis, by age, in a sample of 2383 employed men: , 1981.			
Age (years)	Number Surveyed	Frequenc	Prevalence (\%)
45-49	496	18	3.6
50-54	672	18	2.7
55-59	1215	18	1.5
Total	2383	54	2.3
$\chi^{2}=0.983$	0.612		

Prevalence $=54 / 2383=0.0226 \times 100 \%=2.3 \%$

$$
=0.0226 \times 1000=22.6 \text { cases/ } 1000 \text { pop. }
$$

A study was conducted to examine the incidence of Carpal Tunnel Syndrome (CTS) among computer operators in a certain corporation. An initial survey was given to 12 administrative assistants. Two of the 12 administrative assistants had symptoms and 10 did not reveal signs or symptoms equivalent to CTS. The administrative assistants who did not reveal signs or symptoms equivalent to CTS were then recruited into a study and followed for 4 years. The findings are listed below
3 of the 10 administrative assistants developed CTS during the 4 year follow-up periodCalculate Cumulative Incidence (per 1,000).

Subjects	Follow-up Time(yrs)	CTS
1	1	yes
1	2.5	yes
1	3	yes
2	2	fired
1	1	transferred
4	4	no

Cumulative Incidence= 3/ $10=0.3 \times 100 \%=30 \%$
$=0.3 \times 1000=300$ cases per 1,000 population

