

Metabolism of lipids III: Degradation of fatty acids

Prof. Mamoun Ahram

Resources

- This lecture
- Lippincott's Biochemistry, Ch. 16

Release of fatty acids from TAG

Hormonal regulation

Perilipin

Hormone-sensitive lipase

Perilipin (in red) coats fat droplets blocking HSL. It is phosphorylated by PKA releasing it.

Fasting Feeding Pancreas epinephrine insulin SNS AR Glucagon Brain Glucose cAMP/PKA TG Akt ATGL DG TG TG HSL Expression VLDL Chylomicron Ketogenesis Gluconeogenesi MG MGL G3P<X Glycerol ▲ Acetyl-CoA Glycerol TG FFA 🔶 ACC 3-phosphate oxidation LPL Lipogenesis Albumin thermogenesis DGAT TG FFA FFA capillaries TG TG ATGL: Adipose triglyceride lipase HSL: Hormone-sensitive lipase Muscle MGL: Monoacylglycerol lipase Oxidation

Glyceroneogenesis

Fatty acid *β*-oxidation

LCFA is mitochondrial

PP; + AMP 🗲

ATP

CYTOSOL

CoA

L-Carnitine

Acyl-CoA

Acyl L- Carnitine

More on carnitine...sources

Carnitine deficiencies

- Primary carnitine deficiency
 - Defects in a membrane transporter: No uptake of carnitine by cardiac and skeletal muscles and the kidneys, causing carnitine to be excreted.
 - Treatment: carnitine supplementation.
- Secondary carnitine deficiency
 - Taking valproic acid (antiseizure) \rightarrow decreased renal reabsorption
 - Defective fatty acid oxidation \rightarrow acyl-carnitines accumulate \rightarrow urine
 - Liver diseases \rightarrow decreased carnitine synthesis
 - CPT-I deficiency: affects the liver; no use of LCFA, no energy for glucose synthesis during fasting → severe hypoglycemia, coma, and death
 - CPT-II deficiency: affects the liver, cardiac muscle, and skeletal muscle
 - Treatment: avoidance of fasting and adopting a diet high in carbohydrates and low in fat but supplemented with medium-chain TAG.

SCFAs and MCFAs

β-Oxidation of fatty acids

Induction of gluconeogenesis and fates of acetyl CoA

Synthesis vs. degradation

الجامعة الأرجانية	

VARIABLE	SYNTHESIS	DEGRADATION
Greatest flux through pathway	After carbohydrate-rich meal	In starvation
Hormonal state favoring pathway	High insulin/glucagon ratio	Low insulin/glucagon ratio
Major tissue site	Primarily liver	Muscle, liver
Subcellular location	Cytosol	Primarily mitochondria
Carriers of acyl/acetyl groups between mitochondria and cytosol	Citrate (mitochondria to cytosol)	Carnitine (cytosol to mitochondria)
Phosphopantetheine-containing active carriers	Acyl carrier protein domain, coenzyme A	Coenzyme A
Oxidation/reduction coenzymes	NADPH (reduction)	NAD ⁺ , FAD (oxidation)
Two-carbon donor/product	Malonyl CoA: donor of one acetyl group	Acetyl CoA: product of β-oxidation
Activator	Citrate	
Inhibitor	Palmitoyl CoA (inhibits acetyl CoA carboxylase)	Malonyl CoA (inhibits carnitine palmitoyltransferase-I)
Product of pathway	Palmitate	Acetyl CoA
Repetitive four-step process	Condensation, reduction dehydration, reduction	Dehydrogenation, hydration dehydrogenation, thiolysis

MCAD deficiency

- There are 4 isozymes of fatty acyl CoA dehydrogenase for SCFA, MCFA, LCFA, and VLCFA.
- Medium-chain fatty acyl CoA dehydrogenase (MCAD) deficiency,
 - An autosomal-recessive disorder
 - Solution Most common inborn error of β -oxidation (1:14,000 births worldwide)
 - Higher incidence in Caucasians of Northern European descent
 - Decreased ability to oxidize MCFAs (lack of energy)
 - Severe hypoglycemia and hypoketonemia
 - Treatment: avoidance of fasting

Oxidation of odd-numbered FAs

Note: Loss of electrons

Monounsaturated fatty acid β-oxidation

Polyunsaturated fatty acid β-oxidation

Fatty acyl-CoA

trans- Δ^2 .cis- Δ^4

Fatty acyl-CoA

trans-A3

S-CoA

S-CoA

NADPH + H⁺

NADP⁺

- Oxidation of a double bond at <u>an even-numbered carbon</u>, such as 18:2(9,12) (linoleic acid), requires an NADPH-dependent 2,4-dienoyl CoA reductase in addition to the *isomerase*.
- Note: loss of electrons

2.4-dienovI-CoA

reductase

Peroxisomal β-oxidation

- Zellweger syndrome: a peroxisomal biogenesis disorder
- X-linked adrenoleukodystrophy: dysfunctional transport VLCFA across the peroxisomal membrane

Accumulation of VLCFAs

Peroxisomal α-oxidation

Peroxisomal α-oxidation

- Phytanic acid is a breakdown product of Chlorophyl.
- It is activated by CoA, transported into peroxisome, hydroxylated by phytanoyl CoA αhydroxylase (PhyH), and carbon 1 is released as CO2.
- When fully degraded, it generates formyl-CoA, propionyl-CoA, acetyl-CoA, and 2-methylpropionyl-CoA from the methyl-end.
- Refsum disease is an autosomal-recessive disorder caused by a deficiency of peroxisomal PhyH.

ω-Oxidation

- ω-Oxidation is a minor pathway of the SER
- It generates dicarboxylic acids.
- It is upregulated in certain conditions such as MCAD deficiency.

Lipids and energy

- TAGs are the body's major fuel storage reserve.
- The complete oxidation of fatty acids to CO₂ and H₂O generates 9 kcal/g of fat (as compared to 4 kcal/g protein or carbohydrate). Why?

	carbohydrates	lipids
Stored as?	Starch - plants Glycogen - animals	Fats & oils (plants Fat (animals)
Long/short term storage?	Starch: long-term Gylcogen: short-term	Long term
Ease of digestion/ release of energy?	Easy to release energy	Harder to release energy (needs more oxygen)
Energy per gram?	17kJ/g	38kJ/g
Solubility in water? (and consequence)	Soluble	Not soluble
Use of oxygen in metabolism? (and consequence)	Needs less oxygen, useful for high-demand activity	Needs more oxygen, less efficient to release energy

Exercise and sources of energy

