

Metabolism of lipids IX: *Plasma lipoproteins*

Prof. Mamoun Ahram

Resources

- This lecture
- Lippincott's Biochemistry, Ch. 18

Characteristics of lipoproteins

- Lipoproteins function to
 - Solubilize and carry plasma lipids
 - Transport lipids to (and from) the tissues
 - They range in size and density and have variable purposes and lipid and protein composition.

Composition of lipoproteins

- A neutral lipid core (containing TAG and cholesteryl esters) surrounded by a shell of amphipathic apolipoproteins,
- phospholipid, and non-esterified (free) cholesterol.
 - These amphipathic compounds are oriented such that their polar portions are exposed on the surface of the lipoprotein.
- Sources: diet (exogenous source) or de novo synthesis (endogenous source).
- Total cholesterol=LDL-C + HDL-C + VLDL-C
 - VLDL-C is calculated by dividing TAG by 5 because the TAG/cholesterol ratio is 5/1 in VLDL.
 - The goal value for total cholesterol is <200 mg/dl.</p>

Apolipoproteins

• Functions:

- Recognition sites for cell-surface receptors
- Activators or coenzymes for enzymes involved in lipoprotein metabolism.
- Some are essential structural components (cannot be removed).
- Others are transferred freely among lipoproteins.
- Classes of apolipoproteins are denoted by letters, and subclasses are designated by Roman numbers.
 - Example: apoC-I, apoC-II, and apoC-III.

Apolipoproteins

Apolipo- protein	Molecular Weight	Chylomicron (CM)	VLDL	IDL/CM remnants	LDL	HDL
AI	28,016	Ex	Ex			St
All	17,414	Ex	Ex			Ex
B100	515,000		St	St	St	
B48	241,000	St*		St*		
CI	6600	Ex	Ex			Ex
CII	8800	Ex	Ex			
CIII	8750	Ex	Ex	Ex		Ex
E	34,100	Ex	Ex	Ex		Ex

*B48 is exclusive to chylomicrons and chylomicrons remnants. St, structural apolipoprotein; Ex, exchangeable apolipoprotein. Other apolipoproteins (AIV, AV, D, F, G, H, J, (a)) are beyond the scope of this review.

Chylomicrons

Microsomal triglyceride transfer protein (MTP) assembles the apoB protein with the lipids in the ER before transition to the Golgi, where the particles are packaged in secretory vesicles.

Fate of chylomicrons

- When TAGs are removed, chylomicron remnants would contain cholesteryl esters, phospholipids, apolipoproteins, fat-soluble vitamins, and a small amount of TAGs.
- Chylomicron remnants bind to apoE receptors on the liver via their apoE and are endocytosed.
- The intracellular remnants are hydrolyzed to their component parts.
- Type I hyperlipoproteinemia, familial chylomicronemia, hypertriacylglycerolemia: Deficiency of LPL or apo C-II leading to the accumulation of chylomicron-TAG in the Plasma.

Structure of chylomicrons

The uptake of chylomicron remnants

- Receptor-mediated endocytosis
- Type III hyperlipoproteinemia: mutations in apoE gene leading to docroased closed of chylomicron remnants.

Very-low-density lipoprotein

Nonalcoholic fatty liver (hepatic Apo C-II Apo E steatosis): 00 B-100 LIVER (from HDL) hepatic TAG synthesis >> VLDL Nascent Endogenous VLDL release TAG>CE,C TAG>CE.C TISSUES Apo C-II and apo E Normal Liver 2 • Exa Fatty Liver Lype 2 (for example, adipose) are transferred CAPILLARIES DM from HDL to the VLDL nascent VLDL. 3 Extracellular lipoprotein Liver secretes nascent, TAG-rich lipase, activated VLDL particles containing primarily by apo C-II, endogenously synthesized lipids. degrades the TAG in VLDL. 5 LDL binds to specific receptors on extrahepatic tissues and on the liver Lipoprotein and are endocytosed. lipase Abetalipoproteinemia: a rare ree fatty Apo C-II acids hypolipoproteinemia caused by and apo E (to HDL) defective MTP, leading to low B-10/ EXTRA-VLDL or chylomicrons and TAG Glycerol TISSUE IDL accumulates in the liver and intestine. Apo C-II and apo E LDL 4 To LIVER are returned to HDL. Deficient fat-soluble vitamins Muscles

Relation of VLDL to HDL, IDL, and LDL

Regulation of lipoprotein lipase

- LPL is synthesized by adipose tissue and by cardiac and skeletal muscle.
 - The highest concentration of LPL is in cardiac muscle
- Expression of the tissue-specific isozymes is regulated by nutritional state and hormonal level.
 - In the fed state (elevated insulin levels), LPL synthesis is increased in adipose tissue but decreased in muscle tissue.
 - Fasting (decreased insulin) favors LPL synthesis in muscle.

A note about apoE

- ApoE is present in three isoforms, E-2 (the least common), E-3 (the most common), and E-4.
 - ApoE-2 binds poorly to receptors.
 - patients who are homozygotic for apoE-2 are deficient in the clearance of IDL and chylomicron remnants.
 - These individuals have familial type III hyperlipoproteinemia (familial dysbetalipoproteinemia or broad beta disease), with hypercholesterolemia and premature atherosclerosis.
 - The apoE-4 isoform confers increased susceptibility to an earlier age of onset of the lateonset form of Alzheimer disease.
 - Homozygotes being at greatest risk.

APOE3

Homeostatic transcriptomic phenotype Normal cytokine production Normal phagocytosis Normal debris clearance Normal migration

Reduced/normal risk of AD

microglia

APOE4/Aging

DAM transcriptomic phenotype pro-inflammatory cytokine production Impaired phagocytosis Deficient debris clearance Impaired migration

Increased risk of AD

Low density lipoprotein

- Primary lipoprotein is B-100.
- Plasma cholesterol, ~70% of LDL content, is taken to peripheral tissues.
- Receptor-mediated endocytosis
- Type IIa hyperlipidemia (familial hypercholesterolemia [FH]): reduced synthesis of functional LDL receptor leading to premature atherosclerosis.
- Defective apo B-100: autosomal dominant hypercholesterolemia with reduced binding to LDL receptor.

- Proprotein convertase subtilisin/kexin type 9 (PCSK9) promotes internalization and lysosomal degradation of the receptor.
 - PCSK9 inhibitors are now available for the treatment of hypercholesterolemia.

Lysosomal storage diseases

- Wolman disease: a severe, autosomal-recessive deficiency of lysosomal acid lipase deficiency leading to massive intracellular accumulation of cholesteryl esters and triglycerides.
- Niemann-Pick disease, type C: autosomal-recessive deficiency in the transport of free cholesterol out of the lysosome.

Fate and effects of cholesterol

6

- High intracellular cholesterol levels
 - inhibit de novo cholesterol synthesis
 - induce the degradation of HMG CoA reductase.
 - decrease the synthesis of LDL receptor through the negative regulation of SREBP-2.
- Excess cholesterol is esterified by acyl CoA:cholesterol acyltransferase (ACAT) and stored in the cells.
 - The activity of ACAT is enhanced by the increased intracellular cholesterol.

Foam cells

- Macrophages possess high levels of unregulated scavenger receptor class A (SR-A) that can bind and endocytose LDL particles carrying oxidized lipids or apo B protein.
- Cholesteryl esters accumulate in macrophages, which transform into "foam" cells that form atherosclerotic plaque.
- LDL-Cholesterol is the

High-density lipoprotein

- HDL particles are formed by the addition of lipid to apo A-1 (~70% of lipoproteins in HDL), which is synthesized by the liver and intestine.
- Functions:
 - HDL provides apo CII and E to VLDL and chylomicron remnants.
 - They take up cholesterol from peripheral tissues and return it to the liver as cholesteryl esters.
- Their high content of phosphatidylcholine enables them to carry non-esterified cholesterol.

Transport of cholesterol by HDL

- The liver-synthesized, nascent, discoidal HDL-bound plasma enzyme lecithin:cholesterol acyltransferase (LCAT or PCAT), a liver enzyme, esterifies the HDL-carried cholesterol by transferring the FA of carbon 2 of PC and the CE is sequestered in the HDL core.
- LCAT is activated by apo A-I.
- Hepatic lipase, which degrades TAG and phospholipids, participates in the conversion of HDL2 to HDL3.
- LIVER SMALL INTESTINE Discoidal nascent HDL SR-B1 ABCA lyso-Pr CAT Hepatic lipase FIDE LDL +IDL ABCA HDL3 PERIPHERAL TISSUES VLDL Free cholestero HDL2

Lysophosphatidylcholine is carried by albumin.

$VLDL \leftrightarrow HDL through CETP$

- Some TAGs are transferred from VLDL to HDL in an exchange reaction that concomitantly transfers cholesteryl esters from HDL to VLDL.
- This exchange is accomplished by cholesteryl ester transfer protein (CETP).
- End-result is relieving product inhibition of LCAT.
- VLDL can then be converted to IDL and LDL.

Reverse cholesterol transport

- The efflux of cholesterol from peripheral cells is mediated primarily by the transport protein ABCA1.
- Tangier disease: no ABCA1, no HDL particles, degradation of apo A-1.
- Cholesteryl ester uptake by the liver is mediated by scavenger receptor class B type 1 (SR-B1).

Defective ABCA1 causes sitosterolemia, cystic fibrosis, Xlinked adrenoleukodystrophy, respiratory distress syndrome, and liver disease.