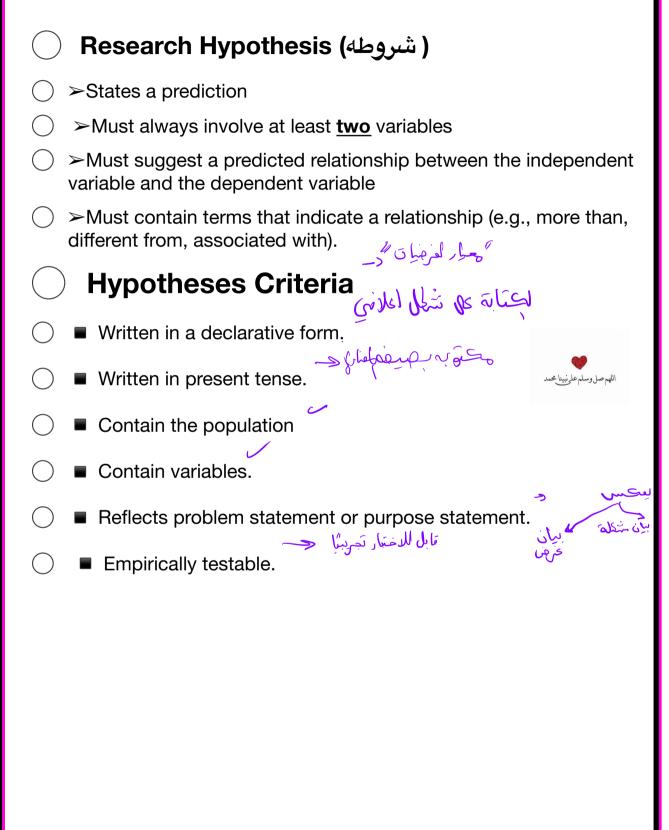

Done by : Farah Hasant				
Lecture 2				
Variables				
\bigcirc 1) is an object, observatoristic, or property that can have different	at values			
\bigcirc 1) is an object, characteristic, or property that can have differer	it values.			
\bigcirc 2) A quantitative variable can be measured in some way.				
\bigcirc 3. A qualitative variable is characterized by its inability to be in	neasured but it can			
be sorted into categories.	6 c 1			
be sorted into <u>categories</u> . برجی قبار سما بل محکی منات	سوخي لا له			
ها يك فتات	تقسيه			
3 9				
Variable				
Quantitative Variables Categorical Variables	اللهم صل وسلم علينينا محمد			
or or or ()() Numeric Variables Qualitative Variables				
Qualitative Variables				
Continuous Discrete Ordinal Nominal				
variable variable variable variable variable				
Types of Variables				
Independent variable — the presumed <u>cause</u> (of a	dependent			
variable)				
\bigcirc Dependent variable —the presumed effect (of an in	ndependent			
variable)				
effect in sold > yere beread a set of the set	ail Crie			
	~			
Levels of Measurement: Nominal, Ordinal,	4			
Interval and Ratio.				
	Ratio			
	Ordered			
\bigcirc	Named Detween variables			
Ratio Absolute zero	Ordered can accommodate			
Intervell Distance is meaningful	Named between variables			
Ordinal Attributes can be ordered	Ordered variables			
Nominal Attributes are only named; weakest Namedward				

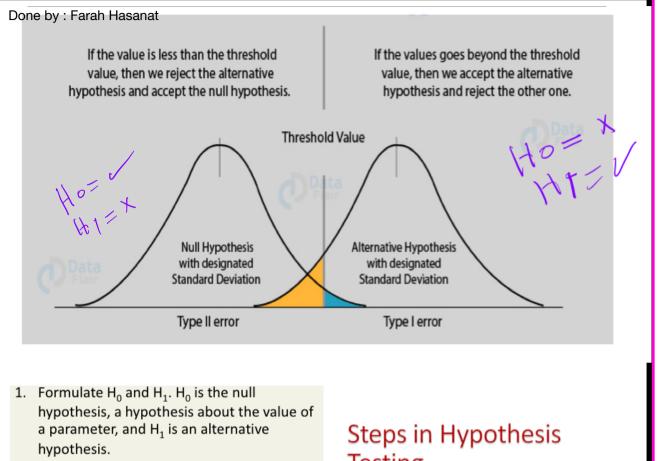
Done by : Farah Hasanat **Parameter and Statistic** Parameter is a descriptive measure computed from the data of the population .whole population \bigcirc The population mean, μ , and the population standard deviation, σ , are two examples of population parameters. If you want to determine the population parameters, you have to take a census of the تعدار سحاني entire population. Taking a census is very costly. _____ Parameters are numerical descriptive measures corresponding to populations. Since the population is not actually observed, the parameters are considered unknown ادر ما مر ق اعدد له کان بحون معدم فير ادت "فرمحدد " Statistic is a descriptive measure computed from the data of the sample.STATISTIC describes only a sample of the population. • For example, the sample mean, X, and the standard deviation, s, are statistics. • They are used to estimate the population parameters. Statistics: It is a branch of applied mathematics that deals with collecting, organizing, & interpreting data using well defined procedures in order to make decisions. **Types of Statistics:**Descriptive Statistics, Inferential **Statistics** A) Descriptive Statistics. It involves organizing, summarizing & displaying \bigcirc data to make them more understandable. A.Measures of Location Measures of Central Tendency: ()○ 1)Mean ○ 2)Median ○ 3) Mode ()Measures of noncentral Tendency- Quantiles: ○ Quartiles. ○ Quintiles. ○ Percentiles. ()


Research Hypothesis

A tentative prediction or explanation of the relationship between two توقع الأ تمسير مؤقل للعلاقه بين متمرين or more variables. It's a translation of research question into a precise prediction of the سرج بة مسؤلا البحث إلى موقع دعيق للنتائج لمسوقهم expected outcomes 🔳 In some way it's a proposal for solution/s 🌙 🖉 يِقَسَى الله 🖌 ■ In qualitative research, there is NO hypothesis نوعی ماهی

Adults in the USA

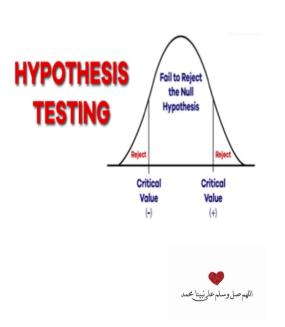
Schools in _____ aug number of student. Africa _____ proportion that high schools


Done by : Farah Hasanat

Done by : Farah Hasanat

Note > : A hypothesis is made about the value of a parameter, but the only facts available to estimate the true parameter are those provided by the sample. If the statistic differs (and of course it will) from the hypothesis stated about the parameter, a decision must be made as to whether or not this difference is significant. If it is, the hypothesis is rejected. If not, it cannot be rejected. يتم وضع فرضية حول قيمة parameter، ولكن الحقائق الوحيدة المتاحة لتقدير parameter الحقيقية هي تلك التي قدمتها sample . إذا statistic اختلف (وسيختلف بالطبع) عن الفرضية الذكورة حول parameter ، فيجب اتخاذ قرار بشأن ما إذا كان هذا الاختلاف مهمًا أم لا. إذا كان الأمر كذلك ، يتم رفض الفرضية. إذا لم يكن كذلك ، فلا يمكن رفضه. () H0: The null hypothesis. This contains the hypothesized parameter value which will be compared with the sample value. H1: The alternative hypothesis. This will be "accepted" only if H0 ()is rejected. Technically speaking, we never accept H0 What we actually say is that we do not have the evidence to reject it. Two types of errors may occur: α (alpha) and β (beta). The α error is often referred to as a Type I () error and β error as a Type II error. H1 = You are guilty of an alpha error if you reject H0 when it really is TrucopH. unla winit All با انامزيط حاس true. You commit a beta error if you "accept" H0 when it is false. True and Roken the arts اللهم صل وسلم على نبينا محمد

one by : Farah Hasanat				
STATE OF NATURE				
		H ₀ Is True		H ₀ Is False
DECISION	Not Reject Ho	GOOI)	β Error (Type II Error)
Reject Ho HI		α Error (Type I Error)		GOOD
Types	of Errc		یا بحد Then Y	م صل وسلم علونيد 'ou Have
	is			
Reject the null hypothe	sis True (there re difference)	ally are no	Made	a Type I Error
Reject the null hypothe	sis False (there re difference)	eally are	•	
Accept the null hypoth	esis False (there re difference)	eally are	Made ⁻	Type II Error
Accept the null hypoth <u> </u>	esis True (there re difference)	ally are no	0	
	H₀ rejected €	Fail t	o reject	H₀= H≥
H₀ false	Correct	Туре	II error	
H₀ true	Type I error	corre	ect	
Alpł	na (α) = Prob (Typ	e I error)		
Beta	a (β) = Prob (Typ	e II error)		
Pow	/er = 1 – β			



e.g., H_0 : μ =12.7 years; H_1 : μ ≠12.7

years

- 2. Specify the level of significance (α) to be used. This level of significance tells you the probability of rejecting H₀ when it is, in fact, true. (Normally, significance level of 0.05 or 0.01 are used)
- 3. Select the test statistic: e.g., Z, t, F, etc.
- 4. Establish the critical value or values of the test statistic needed to reject H_o. DRAW A PICTURE!
- 5. Determine the actual value (computed value) of the test statistic.
- 6. Make a decision: Reject H₀ or Do Not Reject H₀.

Testing

