Unit 3 Probability

ASSOCIATE PROFESSOR DIANA ARABIAT, RN, PHD

Probability

Probability theory

 developed from the study of games of chance like dice and cards. A process like flipping a coin, rolling a die or drawing a card from a deck is called a probability experiment.An outcome is a specific result of a single trial of a probability experiment.

Probability distributions

Probability theory is the foundation for statistical inference.

A probability distribution is a device for indicating the values that a random variable may have.

There are two categories of random variables. These are:

- discrete random variables,

And

- continuous random variables.

Probability Distributions

Discrete Probability
Distribution

Binomial
Distribution

Poisson
Distribution

Continuous Probability
Distribution

Uniform
Distribution
Distribution

A discrete random variable has either a finite or countable number of values. The values of a discrete random variable can be plotted on a number line with space between each point.

A continuous random variable has infinitely many values. The values of a continuous random variable can be plotted on a line in an uninterrupted fashion.

Discrete Random Variables
Number of girls in a classroom
Number of bue marbles in a bag
Number of heads when fliping a coin
Number of typos on a page

Continuous Random Variables
Height of boys in a class
Weight of students in a class
Amount of lemonade in a jug
Time it takes to run a race

Discrete Probability Distributions

Binomial distribution - the random variable can only assume 1 of 2 possible outcomes. There are a fixed number of trials and the results of the trials are independent.

- i.e. flipping a coin and counting the number of heads in 10 trials.

Poisson Distribution - random variable can assume a value between 0 and infinity.

- Counts usually follow a Poisson distribution (i.e. number of ambulances needed in a city in a given night)

Discrete Random Variable

A discrete random variable X has a finite number of possible values. The probability distribution of X lists the values and their probabilities.

Value of X	x_{1}	x_{2}	x_{3}	\ldots	x_{k}
Probability	p_{1}	p_{2}	p_{3}	\ldots	p_{k}

1. Every probability p_{i} is a number between 0 and 1 .
2. The sum of the probabilities must be 1 .

Find the probabilities of any event by adding the probabilities of the particular values that make up the event.

Example

The instructor in a large class gives 15% each of A's and D's, 30% each of B's and C's and 10% F's. The student's grade on a 4 -point scale is a random variable X ($\mathrm{A}=4$).

Grade	$\mathrm{F}=0$	$\mathrm{D}=1$	$\mathrm{C}=2$	$\mathrm{~B}=3$	$\mathrm{~A}=4$
Probability	0.10	.15	.30	.30	.15

What is the probability that a student selected at random will have a B or better?

ANSWER: P (grade of 3 or 4) $=P(X=3)+P(X=4)$

$$
=0.3+0.15=0.45
$$

Continuous Probability Distributions

When it follows a Binomial or a Poisson distribution the variable is restricted to taking on integer values only.

Between two values of a continuous random variable we can always find a third.

Continuous Probability Distributions

- Experiments can lead to continuous responses i.e. values that do not have to be whole numbers. For example: height could be 1.54 meters etc.
- In such cases the sample space is best viewed as a histogram of responses.
- The Shape of the histogram of such responses tells us what continuous distribution is appropriate - there are many.

A histogram is used to represent a discrete probability distribution and a smooth curve called the probability density is used to represent a continuous probability distribution.

a) Discrete
b) Continuous

Continuous Variable

A continuous probability distribution is a probability density function.

The area under the smooth curve is equal to 1 and the frequency of occurrence of values between any two points equals the total area under the curve between the two points and the x-axis.

Normal Distribution

Also called bell shaped curve, normal curve, or Gaussian distribution.

A normal distribution is one that is unimodal, symmetric, and not too peaked or flat.
Given its name by the French mathematician Quetelet who, in the early $19^{\text {th }}$ century noted that many human attributes, e.g. height, weight, intelligence appeared to be distributed normally.

Normal Distribution

Normal Distribution

The normal curve is unimodal and symmetric about its mean (μ).
In this distribution the mean, median and mode are all identical.
The standard deviation (σ) specifies the amount of dispersion around the mean.
The two parameters μ and σ completely define a normal curve.

Normal Distribution

Also called a Probability density function. The probability is interpreted as "area under the curve."

The random variable takes on an infinite \# of values within a given interval

The probability that $X=$ any particular value is 0 . Consequently, we talk about intervals. The probability is = to the area under the curve.

The area under the whole curve $=1$.

Properties of a Normal Distribution

1. It is symmetrical about m.
2. The mean, median and mode are all equal.
3. The total area under the curve above the x-axis is 1 square unit. Therefore 50% is to the right of m and 50% is to the left of m.
4. Perpendiculars of:
± 1 s contain about 68\%;
± 2 s contain about 95\%;
$\pm 3 \mathrm{~s}$ contain about 99.7\%
of the area under the curve.

The normal distribution

The Standard Normal Distribution

A normal distribution
is determined by μ and
σ. This creates a
family of distributions depending on whatever the values of μ and σ are.
The standard normal distribution has
$\mu=0$ and $\sigma=1$.

Standard Z Score

The standard z score is obtained by creating a variable z whose value is

$$
z=\frac{(x-\mu)}{\sigma}
$$

Given the values of μ and σ we can convert a value of x to a value of z and find its probability using the table of normal curve areas.

Importance of Normal Distribution to Statistics

-Although most distributions are not exactly normal, most variables tend to have approximately normal distribution.
-Many inferential statistics assume that the populations are distributed normally.
-The normal curve is a probability distribution and is used to answer questions about the likelihood of getting various particular outcomes when sampling from a population.

BELL CURVE

Why Do We Like The Normal Distribution So Much?

There is nothing "special" about standard normal scores

- These can be computed for observations from any
sample/population of continuous data values
- The score measures how far an observation is from its mean in standard units of statistical distance

But, if distribution is not normal, we may not be able
 to use Z-score approach.

Normal Distribution

Q Is every variable normally distributed?

The Central Limit

Theorem...
much time studying the normal distribution?

A Some variables are normally distributed; a bigger reason is the "Central Limit
Theorem"!!!!!!!!!!!!!!!!!!!!!!!!! !!???????????

...Clearly Explained!!!

Central Limit Theorem

describes the characteristics of the "population of the means" which has been created from the means of an infinite number of random population samples of size (N), all of them drawn from a given "parent population".

Central Limit Theorem

It predicts that regardless of the distribution of the parent population:

- The mean of the population of means is always equal to the mean of the parent population from which the population samples were drawn.
- The standard deviation of the population of means is always equal to the standard deviation of the parent population divided by the square root of the sample size (N).
- The distribution of means will increasingly approximate a normal distribution as the size N of samples increases.

Central Limit Theorem (CLT)

['sen-tral 'li-mat 'thē-a-ram]
The principle that the distribution of sample means approximates a normal distribution as the sample size gets larger, regardless of the population's distribution.

Central Limit Theorem

A consequence of Central Limit Theorem is that if we average measurements of a particular quantity,

Central Limit Theorem

 the distribution of our average tends toward a normal one.In addition, if a measured variable is actually a combination of several other uncorrelated variables, all of them "contaminated" with a random error of any distribution, our measurements tend to be contaminated with a random error that is normally distributed as the number of these variables increases. Thus, the Central Limit Theorem explains the ubiquity of the famous bell-shaped "Normal distribution" (or "Gaussian distribution") in the measurements domain.

$$
\mu_{\bar{x}}=\mu
$$

σ

CEHIRNI IWNT THEOREM

original distribution
$\mu \sigma^{2}$

sampling distribution

No matter the underlying distribution, the sampling distribution approximates a Normal
sampling distribution $\sim N\left(\mu, \frac{\sigma^{2}}{n}\right)$

Normal Distribution

Note that the normal distribution is defined by two parameters, μ and σ. You can draw a normal distribution for any μ and σ combination.

There is one normal distribution, Z, that is special. It has a $\mu=0$ and a $\sigma=1$. This is the Z distribution, also called the standard normal distribution. It is one of trillions of normal distributions we could have selected.

Standard Normal Variable

It is customary to call a standard normal random variable Z.

The outcomes of the random variable Z are denoted by z.
The table in the coming slide give the area under the curve (probabilities) between the mean and z.

The probabilities in the table refer to the likelihood that a randomly selected value Z is equal to or less than a given value of z and greater than 0 (the mean of the standard normal).

2	0.00	0.01	0,02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.0	0.0050	0.0040	0.0080	0.0120	0.0160	0.0190	0.0239	0.0279	0.0319	0.0069
0.1	0.0390	0.0438	0.0478	0.0517	0.0657	0.0596	0.0536	0.0675	0.0714	0.0753
0.2	0.0793	а.	0.0871	0.0910	0.0948	0.0887	0.1026	0.1054	0.1103	0.1141
0.3	0,1172	0.1217	0. 1255	0.1203	0.1331	0.1358	0.1406	0.1443	0.1490	$0.15{ }^{2}$
0.4	0.1534	Q. 1591	0.1628	0.1684	Q.1700	0,1738	0.1772	0.1808	0.184	0. 1879
0.5	0.1915	21950	0.1885	0.2019	02054	0.2035	0.2123	02157	0.2190	0.2224
0.5	0.2257	0.2291	0.2324	0.2357	0.2389	0.2422	0.2454	0.2486	0.2517	028549
0.7	0.2540	0.2811	0.2642	0.2673	a,2704	0.2734	0.2764	0.2796	0.2623	0.2852
0.8	0.2581	02910	0.2938	0.2950	0.2995	0.3023	0.3061	0.3078	0.3105	0.3133
0.9	0.3150	0.3186	0.3212	0.3238	0.3264	0.3289	0.3315	03340	0.3355	03389
1.0	0.3413	23438	0.3481	0.3485	0.3508	0.3513	0.3554	0.3577	0.3529	03621
1.1	0.3843	03685	0.3688	03768	Q3729	0,3749	0.3770	0.378	0.3810	033930
1.2	0.3549	03869	0,3888	0.3907	0.3925	0.3044	0.3962	0.3090	0.3907	6.4015
1.3	0.40cte	0.4049	0.4066	0.4062	0.4099	0.4115	0.4131	0.414	0.4162	0.4177
1.4	0.4158	0.4207	0.4222	0.4236	0.4251	0.4265	0.4279	0.4292	0.4306	0.4319
1.5	0.4332	0.4345	0.4357	0.4370	0.4382	0.4394	0.4466	0.4418	0.4429	0.4441
6	0.4452	0.4463	0.4474	0.4484	0.442	0.4505	0.4515	0.4525	0.4535	0.4545
7	0.4534	0.4564	0.4573	0.4582	0.4591	0.4599	0.4698	0.46	0.4625	04633
8	0.4541	0.46415	0.4656	0.4854	0.4671	0.4678	0.4686	0.48	0.460	0.4706
9	0.4713	0.4719	0,4726	0.4732	0.4738	0.474	0.4750	0.475	0.4781	0.4767
20	0.4772	0.4778	0.4783	0.4788	Q4783	0.4795	0.4003	0.4800	0.4812	0.4817
21	0 (4)er	0.4828	B.4630	(0,45)4	0.4838	0.4842	0.4846	0.4850	0.485	0.4857
2.2	0.4951	0.4864	0.4368	$0.4 \overline{7} 7$	0.4875	0.4878	0.4881	0.4884	0.4887	2.4a96
23	0.4893	0.4896	0.4838	0.4901	0.4904	0.4905	0.4500	0.4511	0.4913	0.4916
24	0.4218	0.4900	0.4922	0.4525	0.4927	0.4929	0.4931	0.4932	0.4234	0.4936
25	0.4088	0.4940	0.4941	0.4043	0.4945	0.4046	$0.494 a$	0.4949	0.4051	0.4952
2.6	0.4953	0.4965	0.4955	0.4567	0.4959	0.4050	0.4561	0.4982	0.4053	0.4564
27	0.4965	0.4966	0.4967	0.4958	0.4968	0.4970	0.4971	0.4972	0,4973	0.4974
2.8	0.4974	0.4975	0.4976	0.4977	0.4977	0.4975	0.4979	0.4979	0,4900	0.49et
29	0.4981	0.4982	0.4382	0.4953	0.4584	0.4984	0.4565	0.4885	0.49\%	0.496E
30	0.4937	0.4587	0.4387	0.4988	0.4988	0.4999	0.4569	0.4989	0.4990	0.4900
3.1	0.4930	0.4991	0.4991	0.4991	0.4992	0.4992	0.4958	0.4992	0.4980	0.4993
3.2	0.4993	0.4993	0.4994	0.4984	0.4994	0.4994	0.4984	0.4995	0.4995	0.4995
3.3	0.4265	0.4935	0.4905	0.4056	0.4096	0.4996	0.4586	0.499	0.4996	0.4297
3.4	0.4997	0.4987	0.4997	0.4967	0.4997	0.490	0.49	048	0.4	0.4998

TaBLED Normal Curve 4reast ${ }^{\prime}\left(x \leq x_{i}\right)$. Entries in the Booly of the Table Are Ireass Between $-\infty$ and :

								2			
I	-0.09	-0.08	-0.07	-0.06	-0.05	-0.04	-0.03	-0.02	-0.01	0.00	z
-9.80	,0001	. 0001	,0001	. 0001	. 0001	.0001	. 0001	.0001	. 0601	.0001	0
-3.70	. 0001	0001	. 0001	. 0001	. 0001	. 0001	. 0001	. 0001	. 0001	. 0001	-3.70
-3.60	. 0001	. 0001	0001	. 0001	. 0001	.0001	. 0001	.0001	. 0002	0002	-3.60
-3.50	.0000	.0002	. 00002	. 0002	.0002	. 00002	. 0002	0002	.0002	. 0002	-3.50
-3.40	bove	,0005	. 00013	. 0003	. 00003	,0003	. 00003	.0003	0.003	. 00003	-3.40
-3.30	. 0008	2004	,0004	,0004	.,0004	0004	,0004	,0005	00005	0005	-3.30
-5.26	. 0006	. 00005	. 00005	. 0006	.0006	. 0006	0006	0006	0007	0007	-3.20
-3.10	. 60007	. 0007	.000]	.0008	. 0006	. 0008	. 00009	0009	. 0009	. 0010	-3.10
-3.90	.0010	. 0010	.0011	,0011	. 0011	. 0012	0012	0013	0013	0013	-3.00
-2.50	. 60044	. 0014	. 0015	. 0015	. 0016	. 0016	. 0017	0018	. 0018	.0019	-2.90
-2.90	. 00049	. 00220	.0021	. 0021	. 0022	. 00229	0023	.0024	.0025	. 0026	-4.80
-2.70	002s	.0027	,0028	.0029	.0690	,003!	.0032	0033	. 0034	0035	-2.70
-2.60	.6036	.0087	.0038	. 0039	. 0040	. 0041	0.043	0044	0045	.0047	-2.60
-2.50	,0043	0049	.005!	. 0052	. 0054	. 00055	00057	0059	0060	.0062	-2.50
-2.30	, bast	. 0066	.0068	. 10069	,0071	. 0073	,0075	.0078	0080	0082	-2.40
-2.30	.0994	0ces 7	. 00889	. 0091	.0094	. 0096	. 0099	. 0102	. 0104	. 0107	-2.30
-2.90	. 0110	. 0113	. 0116	. 0119	. 0122	. 0125	. 0129	. 0132	. 0136	. 0139	-2.20
-2.10	.0443	. 9146	0150	. 0154	. 0158	. 0162	. 0166	. 0170	. 0174	0179	-2.10
-2.00	0183	018	. 0192	. 0197	0202	.0207	. 0212	. 0217	. 0222	0228	-2.00
-1.90	2023	-9239	,02*4	. 0250	.0256	. 0262	. 0268	. 0274	. 0281	. 0288	-1.90
-1.80	0284	*304t	9307	0314	0322	. 0329	,0336	. 0344	. 0351	. 0359	-1.80
-1.70	.0367	. 9373	0384	0392	. 0401	. 0409	. 0418	. 0427	. 0436	. 0446	-1.70
-1.60	. 0455	,0465	3475	.0485	. 0495	. 0505	,0516	. 0526	.0532	. 0548	-1.60
-1.50	0559	.9571	.0582	0594	. 0606	. 0618	. 0630	.0643	,0655	0568	-1.50
-1.40	.0681	.0694	. 0708	-3724	.0735	.0749	. 0276	.0778	. 0793	. 0808	-1.40
-1.30	. 0883	,0e38	\%ess	cesk	Ce85	D891	,081\%	(0)94	0951	. 0968	-1.30
-1.20	. 0985	.7009	, 1*\%	, N034	. 1056	, 1075	. 1098	. 1132	. 1131	. 1151	-1.20
-1.10	. 1170	. 1190	. 1210	123\%	1251	. 1271	. 1299	. 1314	. 1335	. 1357	-1.10
-1.00	. 1379	, 1401	.1423	.1445	-1469	, 159	.1515	. 1339	. 1562	1587	-1.00
-0.90	. 1611	. 1695	. 1600	.10*5	\$311	. 1733	. 1762	. 1788	. 1814	.184!	-0.90
-0.80	. 1867	. 1894	1982	. 1943	1977	. 2006	. 2083	. 2061	. 2090	. 2119	-0.80
-0.70	2148	2177	2206	2236	. 2266	. 2296	. 2327	2358	2389	2420	-0.70
-0.60	.245!	. 2483	2514	. 2546	. 2578	. 2614	.26-43	. 2676	2709	. 2743	-0.50
-0.30	2776	2810	2843	. 2873	. 2912	. 2346	2981	3015	. 3050	. 3085	-0.50
-0.40	3121	3156	3192	. 3228	. 3254	. 3300	. 3336	3372	. 3409	. 3446	-0.10
-0.30	3483	3520	. 3553	. 3594	3632	3669	3707	. 3745	. 3788	. 3821	-0.30
-0.20	3859	3897	. 3936	. 3974	4013	4052	4090	. 4129	. 4168	,4207	-0.20
-0.10	.4247	. 4286	4325	. 4364	. 4404	, 4443	-4483	4522	. 4562	. 4602	-0.10
0.00	. 4641	-4681	. 4321	. 4761	4801	. 4840	4880	. 4920	4960	. 5000	0.00

TABLE B (continued)

\pm	0.90	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.09	0.09	\%
0.00	. 5000	. 5040	. 5080	. 5120	5160	. 5199	. 5239	. 5279	. 5319	. 5359	0.00
0.10	. 5398	. 5438	5478	. 5517	. 5557	\$596	. 5636	. 5675	. 5314	. 5753	0.10
0.20	5793	. 5832	5871	. 5910	5948	. 59887	. 6026	. 6064	. 6103	. 6141	0.20
0.30	. 6179	. 6217	6255	. 6293	6331	-6368	6406	. 6443	6480	. 6517	0.30
0.40	6554	. 6.991	6628	. 6664	6700	. 6736	6772	. 68008	6844	. 6879	0.40
0.50	. 6915	. 6950	6985	. 7019	. 7054	. 7088	. 7123	.7137	. 3190	. 7224	0.50
0.60	. 7257	. 7291	. 7324	. 7337	. 7389	. 7422	. 7454	. 7486	-7517	. 7549	0.60
0.70	. 7588	. 7611	-7642	. 7673	. 7304	. 7734	. 7764	. 7794	. 7823	. 7852	0.70
0.80	. 7881	. 7910	. 7939	,7967	. 7995	8023	805t	,8078	8106	,8133	0.80
0.90	. 8159	. 8186	8212	, 8238	8264	. 8289	8315	. 8340	8365	. 8389	0.90
1.00	. 8413	. 8438	8461	. 8485	. 8508	.8531	.8554	8577	.8599	.8621	1.00
1.10	.8643	. 8665	8686	. 8708	. 8729	. 8749	. 8770	. 8790	. 8810	-8830	1.10
1.20	-8849	. 8889	8888	. 8907	. 8929	. 8944	. 8962	. 8980	. 8997	. 9015	1.20
1.30	. 9032	. 9049	9066	. 9062	9099	.9115	. 9131	. 9147	. 9162	9177	1.30
1.40	. 9192	. 92097	9222	. 9236	9251	.9265	9279	. 9292	. 9306	. 9619	1.40
1.50	. 9332	. 9345	9357	. 9370	9382	. 9394	. 9406	. 9418	. 9429	. 9.41	1.50
1.60	. 9452	. 9463	. 9474	. 9484	. 9495	. 9505	. 9515	9525	. 9533	. 9545	1.60
1.70	. 9554	. 9564	9573	. 9588	. 9591	. 9599	. 9600	9616	. 9625	. 9633	1.70
1.80	.9641	. 9649	9656	. 9664	. 9671	. 9678	. 9686	. 9693	. 9699	. 9706	1.80
1.90	. 9713	.9719	. 9326	. 9732	9738	. 9744	. 9750	9756	9761	.9767	1.90
2.00	. 9772	. 9778	. 9783	. 9788	.9793	. 9798	.9803	.9808	. 9812	. 9817	2.00
2.10	. 9821	. 9826	. 9830	. 9834	9938	. 9842	. 9846	. 9885	. 9854	.9857	2.10
2.20	. 58861	. 9864	9868	. 9871	. 98975	. 9878	. 9881	. 9884	. 9887	. 9899	2.20
2.30	. 9999	. 9896	. 9898	. 9901	9904	. 9906	. 9909	.9911	. 9913	. 9916	2.30
2.40	9918	. 9920	9922	. 9925	. 9927	. 9972	. 9931	. 9938	. 9934	2936	2.40
2.50	. 9938	. 9940	. 9941	. 9943	. 9945	. 9946	.9948	. 9949	. 9951	. 9952	2.50
2.60	9953	. 9955	. 9956	. 9957	9959	. 9960	. 9961	. 9962	. 9963	. 9964	2.60
2.70	. 9965	. 9966	. 9967	. 9968	. 9969	. 9970	. 9971	. 9972	. 9973	. 9974	2.70
2.80	9974	. 9975	9976	. 9977	9937	. 9978	. 9979	. 9979	. 9980	.9981	2.80
2.90	. 9981	. 9988	. 9982	. 9963	. 9984	. 9984	.9885	. 9985	.9986	.9886	2.90
3.00	9987	. 9987	. 9987	. 9988	.9988	. 9989	. 9989	9989	. 9990	.9990	3.00
3.10	. 9990	. 9991	. 9991	. 9991	. 9992	. 9999	. 9999	9992	. 9999	. 99993	3.10
3.20	. 9993	. 9993	9994	. 9994	. 9994	. 9994	. 9994	9995	. 9995	. 9999	3.20
3.30	. 9995	. 9995	. 9999	. 9996	. 9996	. 9996	. 9996	. 9996	. 9996	. 9997	3.30
3.40	. 9997	. 9997	9997	.9997	9997	. 9997	.9997	. 9997	. 9997	. 9998	3.40
3.50	.9998	. 9998	. 9998	. 9998	. 9998		. 9998	9998	. 9998	.9998	3.50
3.60	. 9998	. 9998	9999	. 9999	. 9999	. 9999	. 9999	. 9999	. 9999	. 9999	3.60
3.70	. 9999	. 9999	. 9999	. 9999	. 9999	. 9999	. 9999	. 9999	. 9999	. 9999	3.70
3.80	. 9999	. 9999	9999	. 9999	.9999	. 9999	. 9999	9999	. 9999	. 9999	3.80

Standard Normal Curve

Standard Normal Distribution
"Bell Curve"

Standard Normal Distribution

Standard Normal Distribution

Calculating Probabilities

Probability calculations are always concerned with finding the probability that the variable assumes any value in an interval between two specific points a and b.

The probability that a continuous variable assumes the a value between a and b is the area under the graph of the density between a and b.

Standard Normal Distribution

Finding Probabilities

(a) What is the probability that $z<-1.96$?
(1) Sketch a normal curve
(2) Draw a line for $z=-1.96$
(3) Find the area in the table
(4) The answer is the area to the left of the line $\mathrm{P}(\mathrm{z}<-$
1.96) $=.0250$

z	-0.09	-0.08	-0.07	-0.06	-0.05	-0.04	-0.03	-0.02	-0.01	0.00	z
-3.80	. 0001	. 0001	. 0001	. 0001	. 0001	. 0001	. 0001	. 0001	. 0001	. 0001	-3.80
-3.70	. 0001	.0001	. 00001	. 0001	. 0001	. 00001	. 0001	. 0001	. 0001	. 0001	-3.70
-3.60	.00001	0001	.0001	. 0001	. 0001	. 0001	. 0001	. 0001	. 0002	. 0002	-3.60
-3.50	0002	.0002	. 0002	. 0002	. 0002	. 0002	. 0002	. 0002	. 0002	. 0002	-3.50
-3.40	COOP	.0003	. 00003	. 0003	. 0003	. 00003	. 0003	. 0003	. 0003	. 0003	-3.40
-3.30	0003	. 00004	. 0004	. 0004	. 00004	. 0004	. 0004	. 0005	. 0005	. 0005	-3.30
-3.20	.0005	. 00005	. 0005	. 0006	. 0006	. 0006	. 0006	. 0006	. 0007	. 0007	-3.20
-3.10	.00007	.0007	. 0008	. 0008	. 0008	. 0008	. 0009	. 0009	. 0009	. 0010	-3.10
-3.00	.60410	0010	. 0011	. 0011	. 0011	. 0012	. 0012	. 0013	. 0013	. 0013	-3.00
-2.90	.0014	.0014	. 0015	. 0015	. 0016	. 0016	. 0017	. 0018	. 0018	. 0019	-2.90
-2.80	.00099	.0020	. 0021	. 0021	. 0022	. 0023	. 0023	. 0024	. 0025	. 0026	-2.80
-2.76	.002\%	00027	. 0028	. 0029	. 0030	. 0031	. 0032	. 0033	. 0034	. 0035	-2.70
-2.60	.0036	.0037	. 0038	. 0039	. 0040	. 0041	. 0043	. 0044	. 0045	. 0047	-2.60
-2.50	:004	. 0049	. 0051	. 0052	. 0054	. 0055	. 0057	. 0059	. 0060	. 0062	-2.50
-2.40	:0064	. 0056	. 0068	. 0069	. 0071	. 0073	. 0075	. 0078	. 0080	. 0082	-2.40
-2.310	.0084	. 00087	. 0089	. 0091	. 0094	. 0096	. 0099	. 0102	. 0104	. 0107	-2.30
-2.20	,0140	.0143	. 0116	. 0119	. 0122	. 0125	. 0129	. 0132	. 0136	. 0139	-2.20
-2.10	.0443	. 0146	. 0150	. 0154	. 0158	. 0162	. 0166	. 0170	. 0174	. 0179	-2.10
-2.00	. 0188	. 018	. 0192	. 0197	. 0202	. 0207	. 0212	. 0217	. 0222	. 0228	-2.00
-1.90	.0233	.02239	. 0244	. 0250	. 0256	. 0262	. 0268	. 0274	. 0281	. 0287	-1.90
-1.80	. 02294	-63*91	.0367	. 0314	. 0322	. 0329	. 0336	. 0344	. 0351	. 0359	-1.80
-1.70	.0367	. 0375	.03184	. 0392	. 0401	. 0409	. 0418	. 0427	. 0436	. 0446	-1.70
-1.60	. 0455	. 0465	. 0475	. 0485	. 0495	. 0505	. 0516	. 0526	. 0537	. 0548	$37^{1.60}$

Finding Probabilities

Finding Probabilities

(b) What is the probability that $-1.96<z<1.96$?
(1) Sketch a normal curve
(2) Draw lines for lower $z=-1.96$, and
upper z = 1.96
(3) Find the area in the table corresponding to each value
(4) The answer is the area between the values.

Subtract lower from upper:
$P(-1.96<z<1.96)=.9750-.0250=.9500$

TABEE D (continued)

| \boldsymbol{z} | $\mathbf{0 . 0 0}$ | $\mathbf{0 . 0 1}$ | $\mathbf{0 . 0 2}$ | $\mathbf{0 . 0 3}$ | $\mathbf{0 . 0 4}$ | $\mathbf{0 . 0 5}$ | $\mathbf{0 . 0 6}$ | $\mathbf{0 . 0 7}$ | $\mathbf{0 . 0 8}$ | $\mathbf{0 . 0 9}$ | \boldsymbol{z} |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0.00 | .5000 | .5040 | .5080 | .5120 | .5160 | .5199 | .5239 | .5279 | .5319 | .5359 | 0.00 |
| 0.10 | .5398 | .5438 | .5478 | .5517 | .5557 | .5596 | .5636 | .5675 | .5714 | .5753 | 0.10 |
| 0.20 | .5793 | .5832 | .5871 | .5910 | .5948 | .5987 | .6026 | .6064 | .6103 | .6141 | 0.20 |
| 0.30 | .6179 | .6217 | .6255 | .6293 | .6331 | .6368 | .6406 | .6443 | .6480 | .6517 | 0.30 |
| 0.40 | .6554 | .6591 | .6628 | .6664 | .6700 | .6736 | .6772 | .6808 | .6844 | .6879 | 0.40 |
| 0.50 | .6915 | .6950 | .6985 | .7019 | .7054 | .7088 | .7123 | .7157 | .7190 | .7224 | 0.50 |
| 0.60 | .7257 | .7291 | .7324 | .7357 | .7389 | .7422 | .7454 | .7486 | .7517 | .7549 | 0.60 |
| 0.70 | .7580 | .7611 | .7642 | .7673 | .7704 | .7734 | .7764 | .7794 | .7823 | .7852 | 0.70 |
| 0.80 | .7881 | .7910 | .7939 | .7967 | .7995 | .8023 | .8051 | .8078 | .8106 | .8133 | 0.80 |
| 0.90 | .8159 | .8186 | .8212 | .8238 | .8264 | .8289 | .8315 | .8340 | .8365 | .8389 | 0.90 |
| 1.00 | .8413 | .8438 | .8461 | .8485 | .8508 | .8531 | .8554 | .8577 | .8599 | .8621 | 1.00 |
| 1.10 | .8643 | .8665 | .8686 | .8708 | .8729 | .8749 | .8770 | .8790 | .8810 | .8830 | 1.10 |
| 1.20 | .8849 | .8869 | .8888 | .8907 | .8925 | .8944 | .8962 | .8980 | .8997 | .9015 | 1.20 |
| 1.30 | .9032 | .9049 | .9066 | .9082 | .9099 | .9115 | .9131 | .9147 | .9162 | .9177 | 1.30 |
| 1.40 | .9192 | .9207 | .9222 | .9236 | .9251 | .9265 | .9279 | .9292 | .9306 | .9319 | 1.40 |
| 1.50 | .9332 | .9345 | .9357 | .9370 | .9382 | .9394 | .9406 | .9418 | .9429 | .9441 | 1.50 |
| 1.60 | .9452 | .9463 | .9474 | .9484 | .9495 | .9505 | .9515 | .9525 | .9535 | .9545 | 1.60 |
| 1.70 | .9554 | .9564 | .9573 | .9582 | .9591 | .9599 | .9608 | .9616 | .9625 | .9633 | 1.70 |
| 1.80 | .9641 | .9649 | .9656 | .9664 | .9671 | .9678 | .9686 | .9693 | .9699 | .9706 | 1.80 |
| 1.90 | .9713 | .9719 | .9726 | .9732 | .9738 | .9744 | .9750 | .9756 | .9761 | .9767 | 1.90 |
| 2.00 | .9772 | .9778 | .9783 | .9788 | .9793 | .9798 | .9803 | .9808 | .9812 | .9817 | 2.00 |
| 2.10 | .9821 | .9826 | .9830 | .9834 | .9838 | .9842 | .9846 | .9850 | .9854 | .9857 | 2.10 |
| 2.20 | .9861 | .9864 | .9868 | .9871 | .9875 | .9878 | .9881 | .9884 | .9887 | .9899 | 2.20 |
| 2.30 | .9893 | .9896 | .9898 | .9901 | .9904 | .9906 | .9909 | .9911 | .9913 | .9916 | 2.30 |
| 2.40 | .9918 | .9920 | .9922 | .9925 | .9927 | .9929 | .9931 | .9932 | .9934 | .99340 | 2.40 |

Finding Probabilities

Finding Probabilities

(c) What is the probability that $z>1.96$?
(1) Sketch a normal curve
(2) Draw a line for $z=1.96$
(3) Find the area in the table
(4) The answer is the area to the right of the line. It is found by subtracting the table value from 1.0000:

$$
P(z>1.96)=1.0000-.9750=.0250
$$

Finding Probabilities

Example: Weight

If the weight of males is N.D. with $\mu=150$ and $\sigma=10$, what is the probability that a randomly selected male will weigh between 140 lbs and 155 lbs ?
[Important Note: Always remember that the probability that X is equal to any one particular value is zero, $\mathrm{P}(\mathrm{X}=$ value $)=0$, since the normal distribution is continuous.]

Example: Weight

Solution:

$Z=(140-150) / 10=-1.00$ s.d. from mean
Area under the curve $=.3413$ (from Z table)
$Z=(155-150) / 10=+.50$ s.d. from mean
Area under the curve $=.1915$ (from Z table)
Answer: $.3413+.1915=.5328$

Example: IQ

If IQ is ND with a mean of 100 and a S.D. of 10, what percentage of the population will have
(a)IQs ranging from 90 to 110 ?
(b)IQs ranging from 80 to 120 ?

Solution:

$Z=(90-100) / 10=-1.00$
$Z=(110-100) / 10=+1.00$
Area between 0 and 1.00 in the Z-table is . 3413 ; Area between 0 and -1.00 is also .3413 (Z -distribution is symmetric).
Answer to part (a) is $.3413+.3413=.6826$.

Example: IQ

(b) IQs ranging from 80 to 120 ?

Solution:
$Z=(80-100) / 10=-2.00$
$Z=(120-100) / 10=+2.00$
Area between $=0$ and 2.00 in the Z-table is .4772; Area between 0 and 2.00 is also 4772 (Z -distribution is symmetric).

Answer is $.4772+.4772=.9544$.

