males	Females	Children
Barret's disease (40-	Autoimmune gastritis	Intussusception → intestinal
60yrs)		obstruction
Esophageal		Juvenile polyp
adenocarcinoma(7:1)		
Squamous cell		Peutz-Jeghers
carcinoma (4:1)		syndrome(10-15 yrs)
Gastric adenoma (3:1)		
Intestinal type gastric		
cancer (2:1)		
Hirschsprung disease		

Esophagus:

*reflux esophagitis→most common <40 (may occur in infants)

*esophageal adenocarcinoma \rightarrow chromosomal abnormalities and tp53 mutation.

* esophageal adenocarcinoma→developed countries

* Squamous cell carcinoma→underdeveloped countries*squamous cell

carcinoma \rightarrow Lymph node metastases : Upper 1/3: cervical LNs ,Middle 1/3: mediastinalparatracheal, and tracheobronchial LNs. ,Lower 1/3: gastric and celiac LNs.

Stomach:

*most common cause of chronic gastritis \rightarrow helicobacter pylori

*hematemesis isn't common in chronic gastritis.

*H.pylori \rightarrow non invasive , motile by flagella.

 \rightarrow urease: split urea to ammonia ,protect the bacteria from the acidic environment.

 \rightarrow toxins:cagA

*autoimmune gastritis→reduced serum pepsinogen I level. →vit. B12 deficiency *acute gastric ulcers \rightarrow

stress ulcers: ill patients with shock, sepsis, severe trauma.
 cushing ulcers: intra cranial disease ,high risk of perforation. Duodenum ,stomach ,esophagus.

Direct vagal stimulation→acid hypersecretion. 3-curling ulcers: severe burn or trauma . proximal duodenum. Ulcers are rounded ,shallow to deep, base brown to black.

*PUD hyperacidity \rightarrow Hypergastrinemia as in Zollinger-Ellison syndrome.

* Zollinger-Ellison syndrome→stomach duodenum and jejunum.(4:1 proximal duodenum:stomach).

Caused by uncontrolled secretion of gastrin by a tumor (gastrinoma) resulting massive acid production.

Ulcers are round to oval sharply punched out defect, granulation tissue. Epigastric burning and aching pain.

Pain 1-3 hours after meals at daytime worsens at night.

*gastric polyps arise from chronic gastritis and regress after H.pylori eradication. *Gastric adenoma→background of chronic gastritis atrophy and intestinal metaplasia. Dysplasia in all cases. Risk of adenocarcinoma higher than colonic adenoma.

*Gastric adenocarcinoma → Japan, Costa Rica, Chile.
Background of mucosal atrophy and intestinal metaplasia.
-signet ring.
Two main types: intestinal and diffuse.
Mutations in CDH1 (E-cadherin) → familial diffuse type.
CDH1 mutations → sporadic diffuse type.
FAP: APC gene mutation → intestinal type cancer.
B catenin mutation → sporadic intestinal type Ca.
P54 mutation in sporadic cancer of both types.

*** diffuse type gastric cancer M: F =1:1

*Lymphoma→stomach is the most common site. Most common type: indolent extra nodal marginal zone B-lymphomas (MALToma) Second most common: diffuse large B cell lymphoma.

*Neuroendocrine (carcinoid) tumor→>40% in small intestine. Associated with endocrine cell hyperplasia, chronic atrophic gastritis and Zollinger- Ellison syndrome. -slower growing than carcinomas.

*Carcinoid syndrome: due to vasoactive substances. Cutaneous flushing, sweating, bronchospasm, colicky abdominal pain, diarrhea, right-sided valvular fibrosis.

Intestines:

*Intussusception→segment of the intestine constricted by a wave of peristalsis →telescopes into the immediately distal segment. -abdominal swelling

*Hirschsprung disease: congenital defects in colonic innervation Congenital aganglionic megacolon.

-more common in males while it is more severe in females.

-risk increases in siblings.

-disrupted migration of neural crest from cecum to rectum.

-lack of Meissner submucosal plexus and the Auerbach myenteric plexus. -mutations in RET.

*Hemorrhoids: dilated anal and perianal collateral vessels that connects the portal and caval venous system.

-bleeding, pain, thrombosis and inflammation.

*diarrheal disease: (*dysentery: painful bloody small volume diarrhea) *malabsorptive diarrhea: chronic, defective absorption of fats , lipid and water soluble vits, proteins, carbs, electrolytes, minerals and water.

→hallmark: steatorrhea

*cystic fibrosis → mutations in cystic fibrosis transmembrane conductance regulator (CFTR)

-defects in ion transport across intestinal and pancreatic epithelium.

-thick viscous secretions

-mucus plugs in pancreatic ducts \rightarrow pancreatic insufficiency.

-meconium ileus in neonates.

-defect in intraluminal digestion.

*celiac disease \rightarrow gluten sensitive enteropathy, immune mediated enteropathy. -wheat, rye or barley.

-genetically predisposition \rightarrow HLA-DQ2 or HLA-DQ8.

-association with type 1 diabetes, thyroiditis, Sjogren syndrome.

-gluten>gliadin>reacting with **HLA-DQ2 or HLA-DQ8** on antigen-presenting cells>CD4+ T cells activation>cytokines>tissue damage.

-anti-tissue transglutaminase antibodies, anti- gliadin antibodies, anti-endomysial antibodies.

-happens in the second portion of the duodenum or proximal jejunum.

 \rightarrow in children (6-24 months):classical (irritability, abdominal distention, anorexia, diarrhea, failure to thrive, wight loss, muscle wasting.) or non classical symptoms (abdominal pain, nausea, vomiting, bloating, constipation.)

→in adults: anemia, B12 +folate deficiency, diarrhea, bloating and fatigue. Silent celiac or latent celiac

Increases risk of enteropathy associated T cell lymphoma and small intestine adenocarcinomas.

-noninvasive.

*lactase (disaccharidase) deficiency: osmotic diarrhea.
Lactose remains in gut lumen.
Lactase found at apical brush border membrane.
-acquired: viral or bacterial enteritis, downregulation of gene.
-congenital AR, genetic mutation, rare, explosive diarrhea watery frothy stools and abdominal distention after milk congestion.

*abetalipoprpteinemia: autosomal recessive and rare

-Infants with failure to thrive, diarrhea, steatorrhea

-lack of absorption a fat and fat-soluble vitamins.

-In ability to synthesize, triglyceride-rich lipoproteins.

-transepithelial, transport effect of TG and FAs.

-monoglycerides and triglycerides accumulate epithelial cells.

*inflammatory intestinal disease:-sigmoid diverticulitis

-chronic inflammatory bowel disease (CIBD)

-Crohn disease

-ulcerative colitis

*Inflammatory bowel disease→chronic IBD.

Genetic predisposition, inappropriate mucosal damage.

-ulcerative colitis: limited to the colon and rectum and extends only into mucosa and submucosa.

-Crohn disease: regional enteritis, frequent ileal involvement, affect any area in GIT(most common sites \rightarrow terminal ileum, ileocecal valve and cecum), frequently transmural.

Earliest lesions \rightarrow aphthous ulcer Elongated \rightarrow serpentine ulcers Edema \rightarrow loss of bowel folds.

--cobblestone appearance

Thick bowel wall (fibrosis, hypertrophic MP).

Creeping fat.

-crypt abscesses.

-fissures, fistulas, perforations.

-hallmark→noncaseating granulomas.

-neutrophils in active disease.

-mild diarrhea.

-acute right lower quadrant abdominal pain and fever.

Triggers: physical or emotional stress, specific dietary items, NSAID use and tobacco smoking.

-Iron deficiency anemia(because it cause problems in absorption),

hypoproteinaemia and **hypo**albuminaemia malabsorption of nutrients, vitamin B12 and bile salts.

-fistulas, peritoneal abscesses.

-risk of colonic adenocarcinoma.

-erythema nodosum, clubbing of the fingertips, primary sclerosing cholangitis.

*ulcerative colitis:

- Always involves the rectum.

-Extends proximally in continuous pattern.

- Pan colitis.

- Occasionally focal appendiceal or cecal inflammation.

-Ulcerative proctitis or ulcerative proctosigmoiditis

-Small intestine is normal (except in backwash ileitis)

-pseudopolyps

-serosa is not involved, the ulcers are superficial, no thickening in the mucosa.

-toxic megacolon.

-inflammation limited to mucosa and submucosa.

-no granulomas.

-no skip lesions.

-attacks of bloody mucoid diarrhea+ lower abdominal cramps.

-triggers: cessation of smoking.

--erythema nodosum, clubbing of the fingertips, primary sclerosing cholangitis. -colectomy cures intestinal disease only.

*sigmoid diverticulitis:

-acquired \rightarrow pressure in the sigmoid colon or exaggerated peristaltic contractions or low fiber diet and constipation.

-pseudodiveticulae.

-outpouchings of colonic mucosa and submucosa.

-thin wall.

-risk of perforation, recurrent diverticulitis leads to strictures.

colonic polyps and neoplastic disease:

most common site \rightarrow colon sessile polyp \rightarrow no stalk pedunculated polyp \rightarrow stalk

*inflammatory Polyps→solitary rectal ulcer syndrome.
-recurrent abrasion and ulceration of the overlying mucosa.
-chronic cycles of. Injury and healing give a polypoid mass.

Hemartomatous polyps: 1.Juvenile polyps 2.Peutz-Jeghers syndrome

1.Juvenile polyps: most common
Sporadic or solitary.
-rectum
-syndromic → multiple
Autosomal dominant
-TGF-B mutation
-increased risk of colonic adenocarcinoma.
- pedunculated
-reddish lesions, cystic spaces.
-granulation tissue on surface.
-dilated glands

2.Peutz-Jeghers syndrome:
Autosomal dominant
-multiple gastrointestinal hmartomatous polyps
-most common site→small intestine.
-mucocutaneous hyperpigmentation.
-LKB1/STK11 gene mutation.
-the polyp is large (Christmas tree pattern)
-glands lined normal-appearing intestinal epithelium.

*hyperplastic polyps:

-generation more than degradation

Decreased epithelial turnover and delayed shedding of surface epithelium > pileup of goblet cells & epithelial overcrowding.

-no malignant potential.

-left colon

-rectosigmoid

Multiple

Crowding of goblet and absorptive cells.

Masa Daraghmeh