CVS - Final -Dr. Fatima material

- vascular system function is transport of (o2, hormones, nutrients).
- distribution of blood to organs is not equal and doesn't match their actual need (size, function) like reconditioning organs: skin, GI , kidneys "more amount than needs".
- distribution is parallel to give organ same content of blood without other organs waste products, with monitored blood supply to each organ based on the case.
- brain needs adequate supply, doesn't tolerate decreased amount for more than 4 min , top priority to keep it constant .
- blood flow needs driving force = pressure difference = pressure gradient = heart pumping "diastole- systole", not absolute pressure.
- opposing factor is resistance, to slow flow to exchange, resistance depends on diameter ($r{ }^{*}$, large diameter less resistance) , length(longer= more resistance), viscosity (polycythemia = high viscosity = high resistance),
- any neurological symptoms after APC (history, physical, investigation), CT(faster), MRI more specific, vascular obstruction= stroke .
- laminar flow cause parabolic shape , because of faster flow in center away from walls.
- turbulent flow is not always pathologically, could be physiologically due to branching.
- laminar flow is silent , turbulent cause sound due to vessel diameter change.
- Reynolds number = turbulent tendency: velocity \mathbf{x} diameter \mathbf{x} density / viscosity.
- anemia cause low viscosity and more velocity due to more cardiac output= more turbulent=murmurs can be heard .
- thrombosis causes low diameter, and high velocity, velocity is more important than diameter because it is "flow / area "causing more turbulent.
- elastic fibers in arteries give blood in diastole "recoil", in systole = Strech to accommodate pressure. old age cause degeneration of elastic causing arterial stiffness causing less diastolic pressure \& more systolic causing injury.
- difference between diastolic and systolic we call it pulse pressure, increased in arterial stiffness (low diastole - high systole).
- pulse rate is counting systolic pressure in superficial artery by fingers.
- mean arterial pressure (MAP) at rest is diastolic pressure $+1 / 3$ pulse pressure.
- pressure in left ventricle is high in systole and almost zero in diastole .
- pressure in arteries as high in ventricle in systole but never zero in diastole because of elastic \& diameter .
- in arterioles = smaller diameter , high resistance , decrease pressure .

$$
\begin{aligned}
& \mathrm{F}=\frac{\Delta \mathrm{P}}{\mathrm{R}} \quad \text { Flow rate }=\frac{\pi \Delta P r^{4}}{8 \eta L} \\
& \mathrm{Re}=\frac{\mathrm{v} \cdot \mathrm{~d} \cdot \rho}{\mathrm{n}}
\end{aligned}
$$

- pulse pressure rises in old age atherosclerosis, patent ductus arteriosus (lower diastolic) ,aortic regurgitation (no valve = blood return= increase systolic - decrease diastolic) .
- pulse pressure decreased in aortic stenosis .

- Arterioles = main resistance vessels $2 / 3$ = smaller radius = lesser pressure , nonfluctuating pressure ,continuously monitor tissue needs.
- Arteriolar smooth muscle= (sufficient Ca++ self-induced contractile)+ sympathetic fibers.
- tunica media of arterioles : Smooth muscles with sympathetic + local - hormonal factors, contract $=$ increase resistance $=$ decrease blood flow .
- terminal arterioles "metarterioles" : not continuous, as a sphincter controlling flow to capillary bed .
- total resistance to blood flow is equal to the sum of the resistances of each vessel: $R($ total $)=R 1+R 2+R 3$
- For blood vessels arranged in parallel, the total resistance to blood flow is expressed as follows: $1 / R($ total $)=1 / R 1+1 / R 2+1 / R 3$, so way lesser total resistance .
- The total conductance (the reciprocal of resistance) for blood flow is the sum of the conductance of each parallel pathway.
- amputation of a limb removes a parallel circuit and reduces the total vascular conductance and total blood flow while increasing the total peripheral vascular resistance.
- local factors affect blood flow like physical (stretch, heat, cold, stress) \& chemical (metabolic"O2" + histamine).
- locally : NO is an important vasodilator, whereas endothelin is a potent vasoconstrictor . during allergic reactions, histamine is released and acts as a paracrine as major cause of vasodilation in an injured area.
- acute control : rapid change, up to minutes, (vasodilation or constriction)
- long-term control : slow, better for needs, increase on decrease in number or size of vessels.
- adenosine, carbon dioxide, adenosine phosphate compounds, histamine, potassium ions, and hydrogen ions are vasodilators, less oxygen or nutrients cause vasodilation .
- The cyclical opening and closing is called vasomotion.
- reactive hyperemia : opening after vessel block, cause 7 times flow .
- more functional $=$ required more nutrients = vasodilation $=$ active hyperemia $=20$ times .

- Elevated blood pressure will induce vasoconstriction.

- high arterial pressure stretches the vessel, reactive vascular constriction results.
- increase arterial pressure = increase arterioles resistance as compensatory =constant flow rate $=$ blood flow autoregulation.

- Norepinephrine and epinephrine are sympathetic vasoconstrictors .
- tangiotensin II \& Vasopressin \& Ca++ = are vasoconstrictors .
- $\mathbf{t} \mathrm{H}+\& \mathrm{CO} 2$ \& bradykinin \& histamine \& K+ \& Mg ++ = are vasodilators .
- increase in metabolic demand = increase in capillaries number \& size= if not pathological .
- angiogenesis =vascularity adjustment to match needs fast in young, slow in older .
- Vascular endothelial growth factor (VEGF), fibroblast growth factor, platelet-derived growth factor (PDGF), angiogenin, hypoxia inducible factors (HIFs)= promote angiogenesis
- angiogenesis steps : dissolution of basement >>rapid reproduction>> extended cords>> fold over into a tube>> connects with another tube >>capillary loop .
- angiostatin and Endostatin block angiogenesis .
- long term tension (hypertension)= inward eutrophic remodeling in arterioles +hypertrophy+ thickening + Lumin dilation + stiffness in arteries .
- in CABG - implanted vein get thicker like artery .
- in A-V fistula in Renal failure patients = large artery and large vein , thickening in artery + thickening and increase Lumin diameter in vein .

Vascular remodeling in the Saphenous vein in patient for coronary artery bypass graft procedure.

Vascular remodeling in the arterial side of arteriovenous (A-V) fistula in patients on renal dialysis.

Vascular remodeling in the arterioles in patient with chronic hypertension.

Vascular remodeling in the venous side of arteriovenous (A-V fistula in patients on renal dialysis.

- sympathetic cause major vasoconstriction.
- MAP = CO x TPR , MAP = zero before right atrium , should be sufficient driving pressure\& not too extra work on heart .
- change in CO could change TPR , CO depends on (SV , HR , sympathetic) , TPR (viscosity "red cells" \& radius)
- Sympathetic : many vasoconstriction in GI, and less in muscles \&heart.
- Arterioles have no sympathetic or parasympathetic (except abundant parasympathetic in penis and clitoris)
- vasodilation in penis by NO, in elsewhere by less constriction -in heart by epinephrine.
- cardiovascular center on medulla regulate blood pressure, also hypothalamus control blood flow to skin to regulate temperature .
- buffer system= baroreceptors, regulate artery pressure, arteriolas pressure is auto - min.
- aortic arch baroreceptors is carried to the brain stem on the vagus nerve.
- chemoreceptors in carotid bodies, are sensitive to 02 pressure in arteries, causing sympathetic vasoconstriction in arterioles, related to respiratory .
- brain is intolerant of decreases in blood flow, central chemoreceptors less sensitive.
- ischemic brain = PCO2 immediately increases and pH decreases = arteriolar vasoconstriction = increase in TPR = blood redirection to brain .
- Cushing reaction : Tumer compress brain vessels - less blood-immediate blood redirection to brain .
- stretch receptors in atria and pulmonary = low-pressure receptors detect any increase , then stretch to cause renal sympathetic to decrease reabsorption -dilation "increased $\mathrm{Na}+$ and water excretion" . also go to hypothalamus to decrease ADH .
- increase artery pressure = decrease heart rate , , increase in vein pressure = increase HR .
- From adrenal , norepinephrine binds to A1 = vasoconstriction, epinephrine binds mainly to B2 on heart cause dilation. in Gl mostly A1 so sympathetic constriction .
- Vasopressin = ADH = water retention .
- renin-angiotensin II-aldosterone system (RAAS) is slower - hormonal- restore arterial pressure.
- hypertension leads to atherosclerosis, radius narrowing then increases TPR .
- Complications of Hypertension: (1) left ventricular hypertrophy maybe followed by systolic heart failure.
(2) stroke.
(3) heart attack.
(4) renal failure.
(5) retinal damage.

capillary

- selective perfusion of capillary beds based on needs determined by the degree of dilation or constriction of sphincters
- simple diffusion exchange , O2 and CO2 are highly lipid soluble cross cells, Water-soluble substances need aqueous clefts "less diffusion"
- the greater the number of open capillaries, the greater the surface area for diffusion.
- transcytosis to exchange large proteins .
- slow flow in capillaries = time to exchange
- $v=q / a$, velocity is flow across distance pre time. velocity of flow is inversely proportional to the total cross-sectional area. low velocity means high resistance means smaller diameter = more cross sectional area (largest in capillaries).
- many capillaries $=750$ times larger total cross section than aorta .
- In the capillaries, pressure decreases further for two reasons:

1. 2. frictional resistance to flow.
1. 2. filtration of fluid out of the capillaries.

- capillaries are continues, fenestrated or sinusoidal.
- exchange depends on concentration gradient (passive), bulk flow (hydrostatic and colloid osmotic). not directly with cells ,
- Ultrafiltration at capillary beginning, reabsorption at the end, blood < osmotic

Lymphatic system

- filtrated more than reabsorbed, is picked up by the lymphatic system.
- functions : retain extra fluid \& protein, defense , transport fat .
- "lymph pump" \& skeletal muscle contraction (affected by sympathetic stimulation) $=$ lymph flow , One-way valve prevent backflow ,
- Edema = fluid accumulation ECF , causes : increase hydrostatic pressure (filtration) , decrease oncotic pressure (absorption- due to protein), increase hydraulic "kinetic".

veins

- 64% blood reservoir , high capacity , low resistance ."large volume under low pressure"
- Compliance of the arteries is much lower than that of the veins.(low volume under high pressure)
- Changes in venous capacity directly influence the magnitude of venous return.
- venous return refers to the volume of blood per minute entering each atrium from the veins. increase venous retain by : Sympathetic stimulation (constriction), skeletal contraction against gravity, one-way valve, sub-atmospheric pressure in chest, cardiac suction (valve downward, ventricle emptying).

Hemorrhage

- Low pressure = baroreceptor reflux $=$ sympathetic $=\mathbf{1 H R}, \mathrm{CO}$, contractility , constriction.
- low pressure $=\mathbf{t}$ RAA $=\mathbf{t}$ aldosterone $=$ water + Na retention $=$ increase blood volume .
- increase fluid reabsorption in capillaries.

