ISCHEMIC HEART DISEASE-1

myocardial ischemia occurs when:

& Blood supply

If the Blood supply is decreased and Oxygen demand is increased we have imbalance

Examples: -Atherosclerosis -Coronary Vasospasm -Hypovolemia -Shock

402 demand.

Factors that increase oxygen demand in the heart (increase workload on cardiac muscle):

Examples: -exertion -hypertension -stress -tachycardia

- •a group of related syndromes resulting from myocardial ischemial (an imbalance between cardiac blood supply (perfusion) and myocardial oxygen demand)
- •IHD ≈ coronary artery disease (CAD)

Ischemia can result from:

- 1. reduction in coronary blood flow atherosclerosis (90 % of cases)
- 2. increased demand (e.g., tachycardia or hypertension)
- 3. diminished oxygen-carrying capacity (e.g., anemia, CO poisoning)

There are four basic clinical syndromes of IHD

1 Angina pectoris

ischemia causes pain but is insufficient to lead to death of myocardium

2 Acute myocardial infarction (MI)

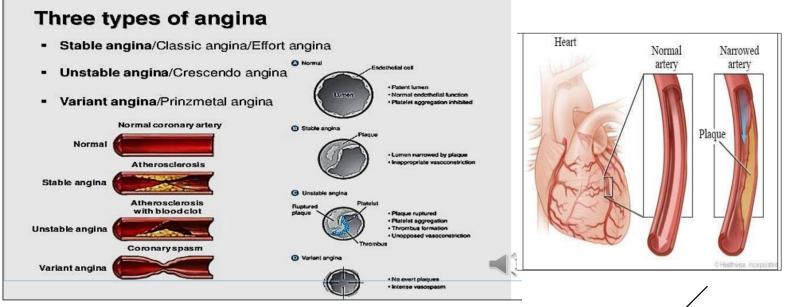
the severity or duration of ischemia is enough to cause cardiac muscle death

3 Chronic IHD

progressive cardiac decompensation (heart failure) following MI

4 Sudden cardiac death (SCD)

can result from a lethal arrhythmia following myocardial ischemia.


Angina pain. A crushing or squeezing substernal pain

Angina pectoris vs MI

angina causes intermittent chest pain caused by transient reversible myocardial ischemia (ischemia causes pain but is insufficient to lead to death of myocardium)

- MI: pain lasts > 20 minutes to several hours and is not relieved by nitroglycerin or rest

Colonary artery disease	: Plaque builds up in the ortery.	
•		
Areginal: it is harder	for blood to get through the artery.	
0		
Heart attack: plaque	cracks and abload clot blocks the artery.	

Pathogenesis of stable angina: critical coronary

- -episodic pain only with increased demand -forms of ↑ myocardial oxygendemand (e.g. exertion; tachycardia; hypertension; fever; anxiety; fear)
- -associated with critical atherosclerotic narrowing
- -relieved by rest (reducing demand) or by drugs (e.g. Nitroglycerin)

Pathogenesis of Prinzmetal angina: severe coronary vasospasm

- occur at rest or sleep
- · Vesselswithout atherosclerosis can be affected
- Etiology not clear
- Treatment: vasodilators (nitroglycerin or calcium channel blockers)

Pathogenesis of unstable angina

critical stenosis with superimposed Acute Plaque Change:

- 1-plaque disruption 2- partial thrombosis (non-occlusive)
- 3- distal embolization 4-vasospasm

- increasing frequency of pain, precipitated by less exertion.
- more intense and longer lasting than stable angina Causes: plaque disruption; superimposed partial

thrombosis; distal embolization; vasospasm.

- Usually precedes more serious, potentially irreversible ischemia, thus it is called: pre-infarction angina

ISCHEMIC HEART DISEASE-2

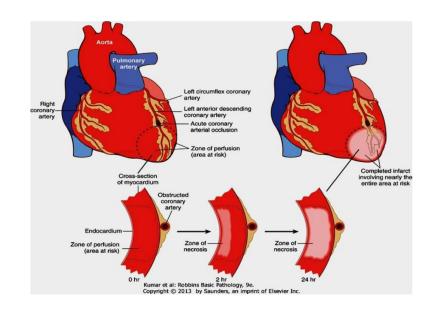
Acute Myocardial Infarction (MI)

- MI = heart attack.
- Necrosis of heart muscle due to ischemia.
- A significant cause of death worldwide

Clinical Features of acute MI

Severe, crushing substernal chest pain that radiates to neck, jaw, epigastrium, or left arm dyspnea (if pulmonary congestion and edema cardiogenic shock (in massive MIs >40% of left ventricle)

Silent infarcts:

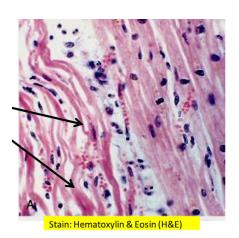

- •A variable percentage of MIs are asymptomatic
- •Confirmed only on ECG and lab workup.
- particularly in: 1DM (peripheral neuropathies) 2 the elderly

MI- Causes:

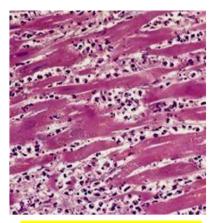
 Acute occlusion of the proximal left anterior descending (LAD) artery is the cause of 40% to 50% of all MI cases

Evaluation of MI

- 1.Clinical signs and symptoms
- 2.Electrocardiographic (ECG)
 abnormalities -> Confirmatory of
 having acute MI
- •3.Laboratory evaluation: blood levels of intracellular macromolecules that leak out of injured myocardial cells through damaged cell membranes

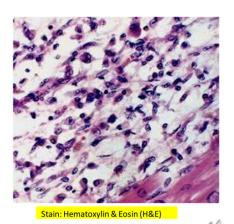

Cardiac enzymes in MI

- 1 Myoglobin
- 2 Cardiac Troponins T and I (TnT, TnI)
- 3 Creatine kinase (CK); specifically the myocardial-specific isoform (CK-MB)
- 4 Lactate dehydrogenase

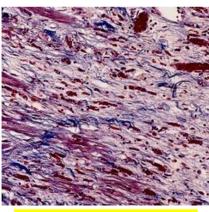

- Cardiac troponins T and I (TnT, TnI), are the best markers for acute MI.
- Creatine kinase CK-MB is the second best marker after the cardiac-specific troponins.

Microscopic features of myocardial infarction and its repair.

coagulative
necrosis and
wavy fibers
Necrotic cells
are separated
by edema fluid

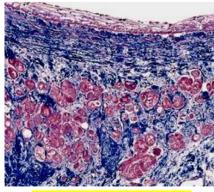


2 - 3 days:
Dense neutrophil
Infiltrate



Stain: Hematoxylin & Eosin (H&E)

7 to 10 days: complete removal of necrotic myocytes by macrophages



up to 14 days:
Granulation tissue
[loose connective
tissue(blue)and
abundant
capillaries (red)]
-weak tissue and
doesn't have

Stain: Masson Trichrome (MT)

several weeks: Healed infarct consisting of a dense collagenous scar (blue) (red) tissues is the remaining viable myocardial cells.

Stain: Masson Trichrome (MT)

Consequences & Complications of MI

1- Death:

- 50% occur before reaching hospital (within 1 hour of symptom onset-usually as a result of lethal arrhythmias (Sudden Cardiac Death)
- Arrhythmias are caused by electrical abnormalities of the ischemic myocardium and conduction system
- With current medical care, patient outcome is better (in-hospital death rate has declined)

- 2- Cardiogenic shock.
- 15% In large infarcts (>40% of Left ventricle).
- 70% mortality rate important cause of in-hospital deaths.
- 3-Myocardial rupture 4-Pericarditis 5-Infarct expansion
- 6- Mural thrombus 7-Ventricular aneurysm 8-Progressive late heart failure

Complications of Myocardial Rupture Include:

(1)rupture of the ventricular free wall:

hemopericardium and cardiac tamponade (usually fatal)

(2)ruptureofthe ventricularseptum:

VSD and left-to-right shunt

(3) papillary muscle rupture:

severe mitral regurgitation

4 .Pericarditis.

- 2 to 3 days post a transmural MI
- -spontaneously resolves (immunologic mechanism)

5 .Infarct expansion.

disproportionate stretching, thinning, and dilation of the infarct region (especially with anteroseptal infarcts)

6 .Mural thrombus.

loss of contractility (causing stasis) + endocardial damage (associated with ischemia) \rightarrow thromboembolism

7 .Ventricular aneurysm.

- A late complication
- most commonly result from a large transmural anteroseptal infarct that heals with the formation of thin scar tissue

Complications of ventricular aneurysms include:

1-mural thrombus 2-arrhythmias 3-heart failure

Long-term prognosis after MI

- -depends many factors :e.g.left ventricular function; severity of atherosclerosis in viable myocardium; etc...
- 1st year mortality ≈ 30%.
- Thereafter, the annual mortality rate≈ 3%

Chronic Ischemic Heart Disease

- results from post-infarction cardiac decompensation that follows exhaustion of hypertrophic viable myocardium.
- progressive heart failure
- sometimes punctuated by episodes of angina or MI
- Arrhythmias are common

Sudden Cardiac Death (SCD)

- Unexpected death from cardiac causes either without symptoms or < 24 hours of symptom onset
- CAD (atherosclerosis) is the most common underlying cause
- Lethal arrythmias (v. fibrillation) is the most common direct mechanism of death
- With younger victims, other non-atherosclerotic causes are more common:

Non-atherosclerotic causes of SCD

- Congenital coronary arterial abnormalities
- Aortic valve stenosis
- Mitral valve prolapse
- Myocarditis
- Dilated/ hypertrophic cardiomyopathy
- Pulmonary hypertension
- Hereditary/ acquired abnormalities of cardiac conduction system
- •unknown causes...