Yanal A. Shafagoj MD. PhD

Textbook of medical physiology, by A.C. Guyton and John E, Hall

First Jordan Edition

- In general the 11 lectures will cover the following Respiratory Physiology Topics:
- ▶ 1. Overview: causes of hypoxia...One lecture
- 2. Mechanics of Breathing (Lung Ventilation)...one lecture.
- 3. Airway Resistance...COPD...2 lectures.
- 4. Lung Compliance...1 lectures...Lung fibrosis, IRDS and ARDS
- 5. Pulmonary circulation Ventilation-Perfusion Ratio...1 lecture.
- 6. Gas Exchange and Transport...2 lectures
- ▶ 7. Regulation of Lung Ventilation, high altitude, exercise
- etc...2 lectures.
- 8. Pulmonary Function Test and Pathophysiology (lung Diseases) and Clinical Applications...one lecture.

The non-respiratory functions of the respiratory system

- The non-respiratory functions of the respiratory system (Note: Most of these non-respiratory functions of the lungs will not be covered in this course):
- Helps blood and lymph flow (venous return)
- Acid base balance. Regulation of pH which dependents on rate of CO2 release
- Pulmonary capillary remove any air bubble which might otherwise
- reach systemic circulation
- Airways remove airborne particles
- Ventilation contribute to heat loss and water loss. Regulation of body temperature by evaporation of water from the respiratory passages to help heat loss from the body
- Important reservoir of blood
- Phonation
- ▶ BP regulation by converting AI to AII
- Metabolic functions such as:
- Conversion of angiotensin I to All
 - Synthesis and removal of bradykinin and PGs
- Storage and release of serotonin and histamine
- inactivation of noradrenaline and adrenaline
- synthesis of peptides like substance P and opiates
- secretion of heparin by mast cells
- secretion of immunoglobulins in the bronchial mucus

Introduction

▶ RS and CVS systems are highly interconnected: fact: lung disease probably will develop heart failure and vice versa; for example: left heart failure will result in pulmonary edema and decreased O2 supplied by the lung due to lung disease will result in right heart failure (corpulmonale)

- Hypoxia is decreased O₂ utilization by the cells
- What are the Potential Causes of Hypoxia

Causes

- inadequate oxygenation of lungs
 - Atmosphere...high altitude
 - decrease muscle activity ..paralysis
- pulmonary disease
- inadequate transport.. anemia and heart failure
- inadequate usage as septicemia and CN poisoning

Introduction

- ► Respiration is the process by which the body takes in and utilizes oxygen and gets rid of CO₂.
- Exchange of gases
- ▶ Directionality depends on gradients "Pressure difference "!
 - From atmosphere to blood -And from blood to tissues
- Three determinants of respiration
- Respiration depends on three things: the lungs, the blood, and the tissues.

Basics of the Respiratory System

Respiration

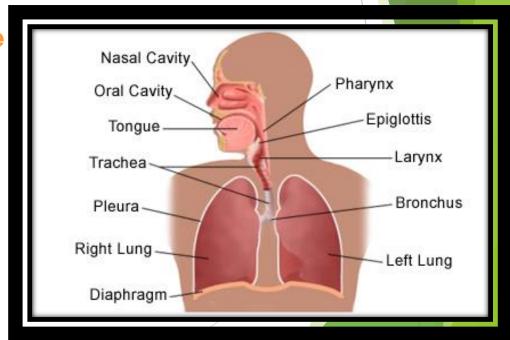
- What is respiration?
 - ▶ **Respiration** = the series of exchanges that leads to the uptake of oxygen by the cells, and the release of carbon dioxide to the lungs
 - Step 1 = ventilation
 - ▶ Which includes: Inspiration & expiration
 - Step 2 = exchange between alveoli (lungs) and pulmonary capillaries (blood)
 - ▶ Referred to as *External Respiration*
 - Step 3 = transport of gases in blood
 - Step 4 = exchange between blood and cells
 - ▶ Referred to as *Internal Respiration*
 - Cellular respiration = use of oxygen and ATP synthesis

- The lungs: The lungs must be adequately ventilated and be capable of adequate gas exchange.
- Ventilation: is determined by the activity of the control system (respiratory center), the adequacy of the feedback control systems (neural and hormonal), and the efficiency of the effector system (muscles of respiration).
- ► **Gas exchange**: depends on the patency of the airways, the pressure gradient across the alveolar-capillary membrane, the diffusability of individual gases and the area and thickness of the exchange membrane.

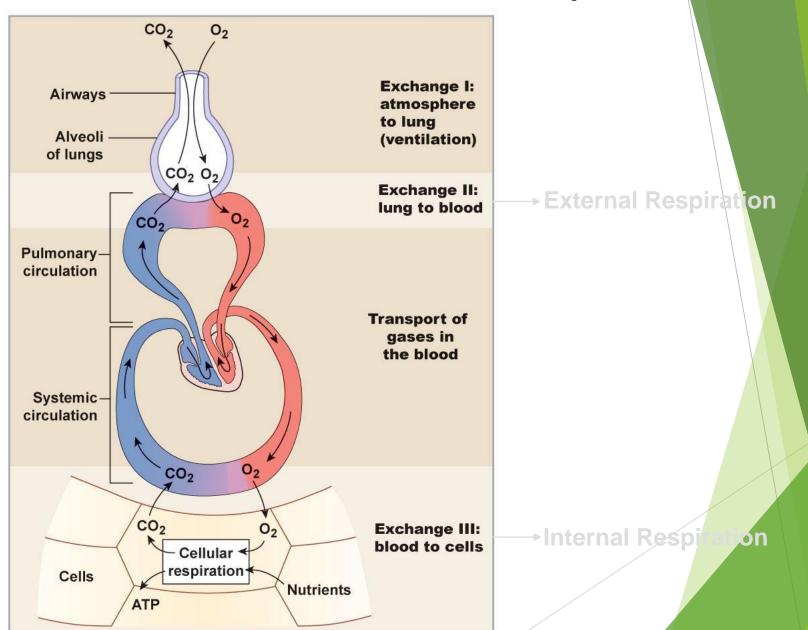
The Blood:

The blood must pick up, carry and deliver O_2 and CO_2 in amounts that are appropriate to the body's need. It depends in the presence of adequate amount of the correct type of Hb, the cardiac output, and local perfusion.

- The Tissues:
- Individual cells must be capable of taking up and utilizing O_2 properly.
- Hypoxia can therefore result from a fault at any point along this lungs-blood-tissue chain.


Functions of the respiratory system

The primary function of the respiratory system is to deliver sufficient amount of O₂ from the external environment to the tissues and to remove CO₂ that is produced by cellular metabolism to the surrounding atmosphere....Therefore, it is homeostasis of O₂, CO₂, H⁺

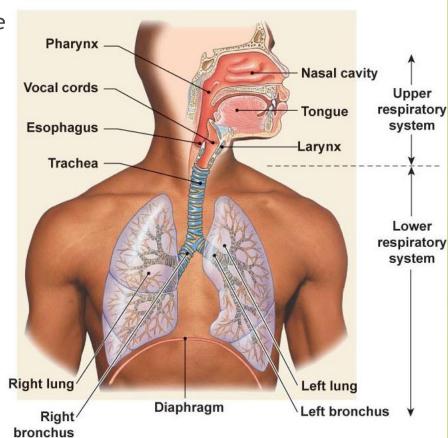

One more time: To achieve these goals:

respiration can be divided into four major functions:

- (1) Pulmonary ventilation
- (2) Diffusion
- (3) Transport of O_2 & CO_2 . (perfusion)
- (4) Regulation of ventilation.

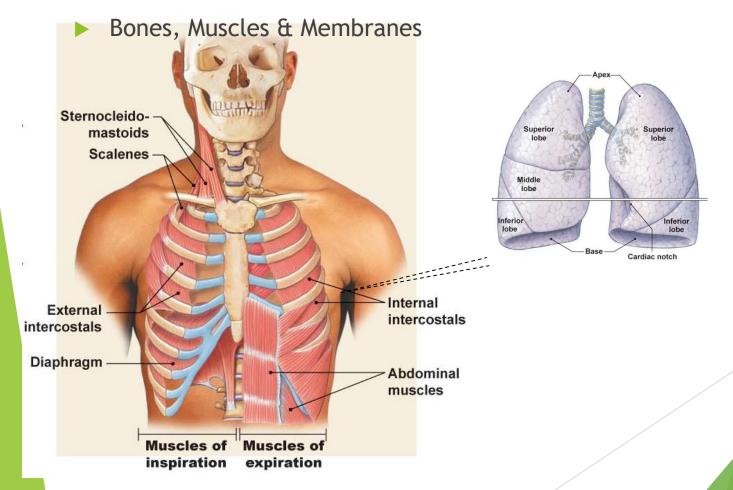
Schematic View of Respiration

Partial Pressures of Gases in Inspired Air and Alveolar Air


Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

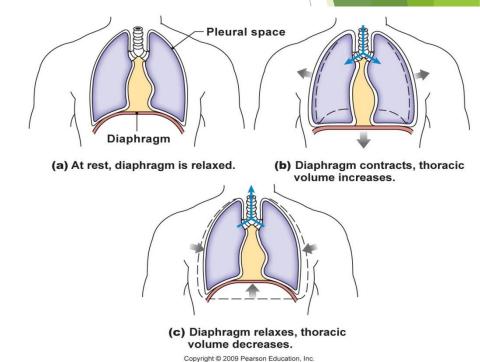
	Inspired air	Alveolar air
H ₂ O	Variable	47 mmHg
CO ₂	000.3 mmHg	40 mmHg
02	159 mmHg	105 mmHg
N ₂	601 mmHg	568 mmHg
Total pressure	760 mmHg	760 mmHg

Basics of the Respiratory System


Functional Anatomy

- What structural aspects must be conside respiration?
 - ► The conducting zone
 - The respiratory zone
 - The structures involved with ventilation
 - Skeletal musculature
 - Pleural membranes
 - Neural pathways
- All divided into
 - Upper respiratory tract
 - ► Entrance to larynx
 - Lower respiratory tract
 - Larynx to alveoli (trachea to lungs)

Basics of the Respiratory System


Functional Anatomy

Basics of the Respiratory System

Functional Anatomy

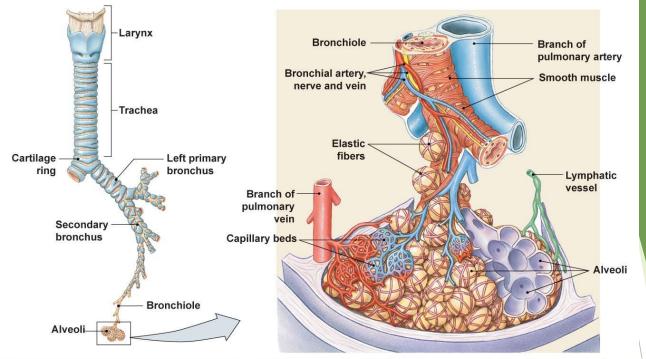
- ▶ Function of these Bones, Muscles & Membranes
 - ► Create and transmit a pressure gradient
 - ► Relying on
 - ▶ the attachments of the muscles to the ribs (and overlying tissues)
 - The attachment of the diaphragm to the base of the lungs and associated pleural membranes
 - The cohesion of the parietal pleural membrane to the visceral pleural membrane
 - Expansion & recoil of the lung and therefore alveoli with the movement of the overlying structures

Basics of the Respiratory System Functional Anatomy

- Pleural Membrane Detail
 - Cohesion between parietal and visceral layers is due to serous fluid in the pleural cavity
 - Fluid (30 ml of fluid) creates an attraction between the two sheets of membrane
 - As the parietal membrane expands due to expansion of the thoracic cavity it "pulls" the visceral membrane with it
 - And then pulls the underlying structures which expand as well
 - Disruption of the integrity of the pleural membrane will result in a rapid equalization of pressure and loss of ventilation function= pneumothorax and collapsed lung

Basics of the Respiratory System: Functional Anatomy

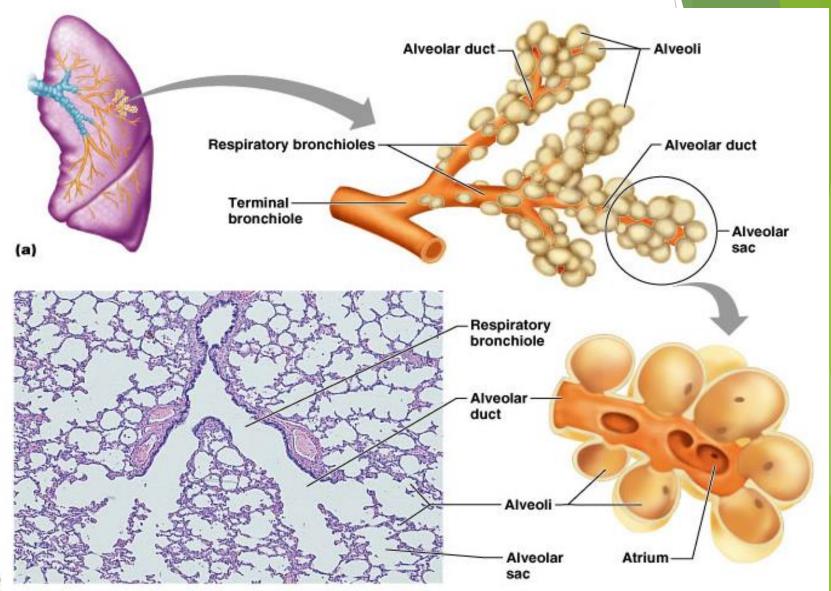
- The Respiratory Tree
 - connecting the external environment to the exchange portion of the lungs...Trachea being generation zero (we may also call it "branch" or "division")...we have 23 generations/branches/divisions
 - similar to the vascular component
 - larger airway = high velocity
 - small cross-sectional area
 - smaller airway = low velocity
 - ▶ large cross-sectional area

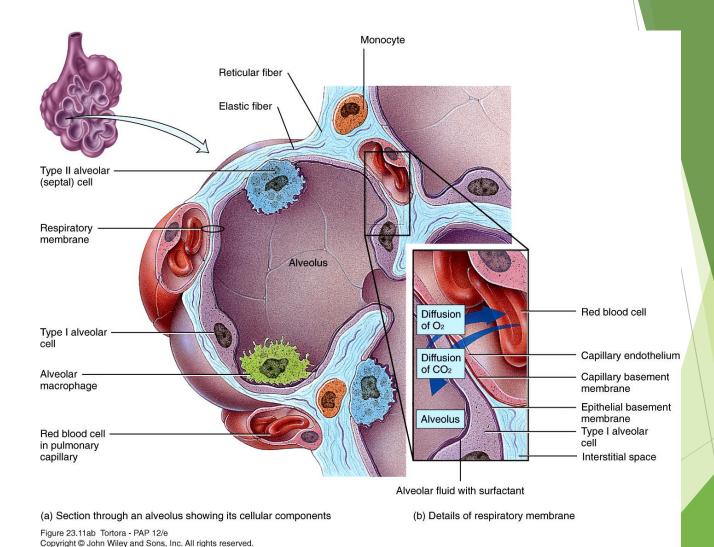

Basics of the Respiratory System Functional Anatomy

- ► The Respiratory Tree
 - Upper respiratory tract is for all intensive purposes a single large conductive tube
 - The lower respiratory tract starts after the larynx and divides again and again...and again to eventually get to the smallest regions which form the exchange membranes
 - ► Trachea
 - ▶ Primary bronchi
 - Secondary bronchi
 - ► Tertiary bronchi
 - **▶** Bronchioles
 - ► Terminal bronchioles
 - ► Respiratory bronchioles with start of alveoli outpouches

conductive portion...first 16 branches

exchange portion...last 7 generations


► Alveolar ducts with outpouchings of alveoli


	Name	Division	Diameter (mm)	How many?	Cross-sectional area (cm²)
Conducting system Exchange surface	Trachea	0	15-22	1	2.5
	Primary bronchi	1	10-15	2	
	Smaller bronchi	2	1-10	4	
	Si Si Ciliciii	3			
		4			
		5			
		6-11		1 x 10 ⁴	↓
	Bronchioles	12-23	0.5-1	2 x 10 ⁴	100 ↓ 5 x 10 ³
	Alveoli	24	0.3	3-6 x 10 ⁸	>1 x 10 ⁶

Cartilage and its protection

- ► The first 10 generations have cartilage and thus have support and therefore are somehow not collapsible structures
- ▶ 12th to 16th are called bronchioles (diameter < 1 mm) lack cartilage....and thus are collapsible
- ► From 0-16 is the conductive zone...ADS (2 ml/kg BW)
- From 17-23 is the respiratory zone...
- ► Some times 17th -19th are called Transitional zone
- ▶ 20th to 22nd are called alveolar ducts (0.5 mm in diameter) and are completely lined with alveoli
- ► Alveoli can intercommunicate through the pores of Kohn

Components of Alveolus

Copyright 2009, John Wiley & Sons, Inc.

Basics of the Respiratory System

Functional Anatomy

Anatomic Dead space : Definition...Function

Raises incoming air to 37 Celsius

- Warm
- ▶ Humidify
- ► Filter
- Vocalize

Basics of the Respiratory SystemFunctional Anatomy

- What is the function of the respiratory zone?
 - Exchange of gases Due to
 - Alveoli have a volume of 5-6 liters. A sphere of this volume has a surface area of 0.16 m². However, the alveolar surface area is 50-100 m². (150-times more)
 - ▶ Type I alveolar cells (simple squamous Epithelium...flat cells...suitable for diffusion).
 - ▶ The surface area of the alveoli available for diffusion is about the size of a tennis court
 - Associated huge network of pulmonary capillaries
 - 80-90% of the space between alveoli is filled with blood in pulmonary capillary networks
 - Exchange distance is less than 1 μm from alveoli to blood!
 - Protection
 - Free alveolar macrophages (dust cells) <u>Alveolar macrophage</u> is the garbage man of the alveoli and thus clean the alveoli.
 - Surfactant produced by type II alveolar cells (septal cells)

Respiratory Physiology Gas Laws

- Basic Atmospheric conditions
 - Pressure is typically measured in mm Hg
 - At sea level, atmospheric pressure is 760 mm Hg
 - Atmospheric components
 - Nitrogen = 78% of our atmosphere PN₂≈ 600 mmHg
 - Oxygen = 21% of our atmosphere PO₂ ≈ 160 mmHg
 - Carbon Dioxide = .033% of our atmosphere, and for practical purposes we will consider PCO₂≈ zero mmHg...we ignore it.
 - Water vapor, krypton, argon, Make up the rest...but bcs we consider dry atmospheric air we are going to ignore them too.

► Consider PO₂ and PCO₂ in different compartments.

•		Atmospheric	ADS	Α	a	٧	<u>E</u>
•	PO_2	160	150	102	102	40	120
•	PCO ₂	0		40	40	45	28
•	PH ₂ O	Dry	47	47	47	47	47
•	<u>PN</u> 2	600	563→	571	571	571	566
•	Total	P 760	760	760	760	704	760

Notice: Alveolar and arterial composition are the same

How to calculate alveolar P_AO_{2 A=stands for alveolar}

$$P_AO_2 = P_IO_2 - (PCO_2/R)$$
 _{I=stands for inspired} $PO_2 = 150 - (40/0.8) = 100$

R is respiratory exchange ratio ~0.8 we will come back to this concept...don't worry

In a normal person alveolar $P_AO_2 \approx a \ P_aO_2$...the difference is less than 5 mmHg for reasons to be discussed later (V/Q ratio)

The same concept: $P_ACO_2 = P_aCO_2$.

A few laws to remember

Dalton's law...the partial pressure law

Fick's Laws of Diffusion...

Ohm's law which is the most important law in physiology (not only in respiratory physiology!)

Boyle's Law: volume versus pressure

Ideal Gas Law ...conversion between units PV=nRT

Gas Laws

- Dalton's Law
 - Law of Partial Pressures
 - "In a mixture of gases, each gas will exert a pressure independent of other gases present"
 - In a mixture of gases each gas behaves as if it is the only gas available in that mixture

Or

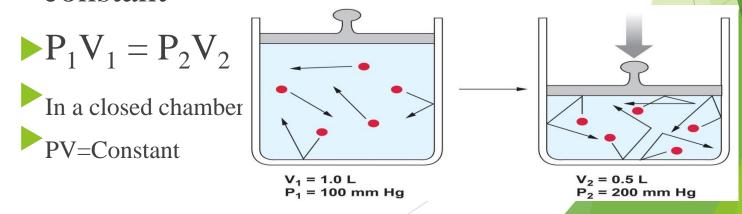
- ► The total pressure of a mixture of gases is equal to the sum of the individual gas pressures.
- What does this mean in practical application?
 - If we know the total atmospheric pressure (760 mm Hg) and the relative abundances of gases (% of gases)
 - ▶ We can calculate individual gas effects!
 - P_{atm} x % of gas in atmosphere = Partial pressure of any atmospheric gas
 - \triangleright PO₂ = 760mmHg x 21% (.21) = **160 mm Hg**
 - Now that we know the partial pressures we know the gradients that will drive diffusion!

Again: Dalton's Law

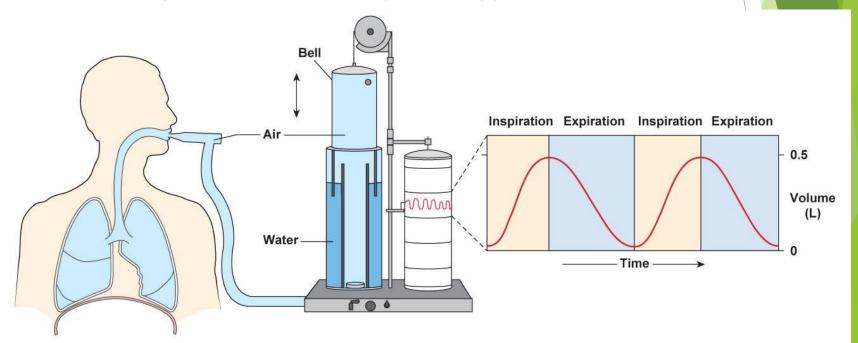
In a gas mixture the pressure exerted by each individual gas in a space is independent of the pressure exerted by other gases.

$$P_{atm}$$
= $PH_2O + PO_2 + PN_2 + PCO_2$
 P_{gas} =% total gases * P_{total}

- Fick's Laws of Diffusion
 - ► Things that affect rates of diffusion of gases
 - ▶ Distance to diffuse...thickness of the respiratory membrane
 - $ightharpoonup \Delta P$ for that gas
 - Diffusing molecule sizes ...least important
 - ► Temperature...usually it is stable 37C
 - In healthy individuals, most of the above variables are constant with the exception ΔP
 - So it all comes down to partial pressure gradients of gases... determined by Dalton's Law!


Fick's Law

► Fick's Law defines diffusion of gas


► GAS Diffusion=Area*∆Pressure *Diffusion Coefficient /Distance

- ► Diffusion Coefficient = Solubility/(Molecular weight)^{1/2}
- MW has small effect bcs it is the square root of MW

- ▶ Boyle's Law
 - Describes the relationship between pressure and volume...this law helps you to understand how we breath in and out.
 - "the pressure and volume of a gas in a system are inversely related if the temperature is kept constant

- ► How does Boyle's Law work in us?
 - As the thoracic cavity (container) expands the volume increases and pressure goes down
 - ▶ If it goes below 760 mm Hg what happens?
 - As the thoracic cavity shrinks the volume must go down and pressure goes up
 - ▶ If it goes above 760 mm Hg what happens

- Ideal Gas law
 - The pressure and volume of a container of gas is directly related to the temperature of the gas and the number of molecules in the container
 - PV = nRT
 - n = moles of gas
 - ► T = absolute temp
 - ▶ R = universal gas constant @ 8.3145 J/K·mol
- Why Do we care? It helps you to convert PCO₂ (mmHg) to [CO₂] in mmol/l later when you consider acid-base disturbance in renal physiology

Respiratory Physiology

Gas Laws

Henry and his law

At a constant temperature, the amount of a given gas dissolved in a given type and volume of liquid is directly proportional to the partial pressure of that gas multiplied by the solubility of a gas in a

* Solubility has a constant which is different for each gas

Using this law you can predict how much O_2 and CO_2 are available in dissolved form.

Solubility hardly change, but PO2 and PCO2 can both change

Partial Pressures of Gases in Blood

- When a liquid or gas (blood and alveolar air) are at equilibrium:
 - The amount of gas dissolved in fluid reaches a maximum value (Henry's Law).
- Depends upon:
 - Solubility of gas in the fluid.
 - ► Temperature of the fluid.
 - Partial pressure of the gas.
- .

- ► To makes Inspiration possible? (Mechanics)
 - Biological answer
 - Contraction of the inspiratory muscles causes an increase in the thoracic cavity size, thus allowing air to enter the respiratory tract
 - Physics answer
 - As the volume in the thoracic cavity increases (due to inspiratory muscle action) the pressure within the respiratory tract drops below atmospheric pressure, creating a pressure gradient which causes molecular movement to favor moving into the respiratory tract
 - Cause of Expiration? What you think? How this process is reversed?

Mechanics of Breathing

Airflow is governed by the basic flow equation, which relates flow to driving force (pressure) & airways resistance.

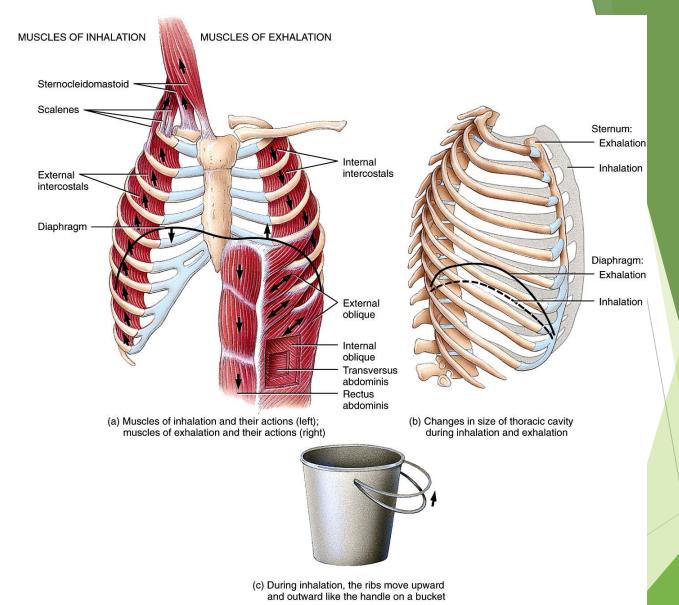
Always remember Ohm's law: Flow is directly proportional to the driving force and inversely proportional to the resistance

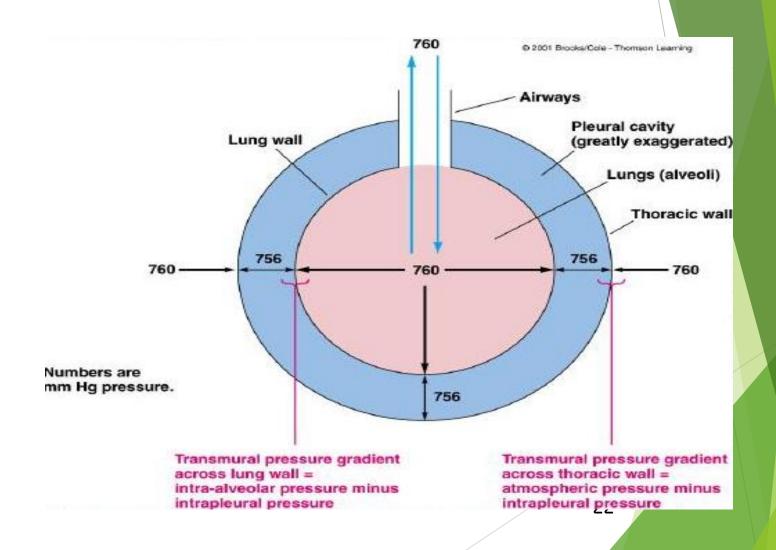
Flow = pressure difference (driving force) / resistance = $\Delta P/R$

- ▶ 1. <u>By positive Pressure Breathing</u>: **resuscitator**: P at the nose or mouth is made higher than the alveolar pressure (P_{alv}). This is artificial type of breathing...not normal physiological breathing
- 2. By negative Pressure Breathing: P_{alv} is made less than P_{atm}. This is normal pattern of breathing
- It is the pressure difference between the two opposite ends of the airways: $(P_{alv} P_{atm})$
- If R is large then ΔP must be large too to keep flow constant, we recognize the magnitude of airway resistance from the ΔP needed...indirectly.

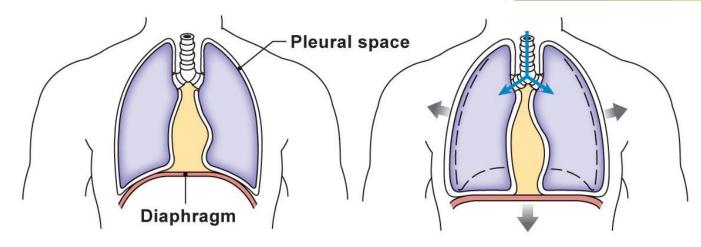
Inhalation or inspiration

- Inhalation is active bcs it involves contraction of:
 - Diaphragm most important muscle of inhalation
 - ▶ Flattens, lowering dome when contracted
 - Responsible for 75% of air entering lungs during normal quiet breathing
 - External intercostal muscles (not internal intercostal muscles!)
 - Contraction elevates ribs
 - Responsible 25% of air entering lungs during normal quiet breathing
 - Accessory muscles for dee and forceful inhalation
- When thorax expands...lungs expand too and intrapulmonic (intra-alveolar) pressure drops... which create a driving force for air flow. Parietal and visceral pleurae adhere tightly



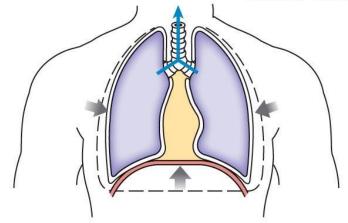

Figure 23.13 Tortora - PAP 12/e Copyright © John Wiley and Sons, Inc. All rights reserved.

Copyright 2009, John Wiley & Sons, Inc.

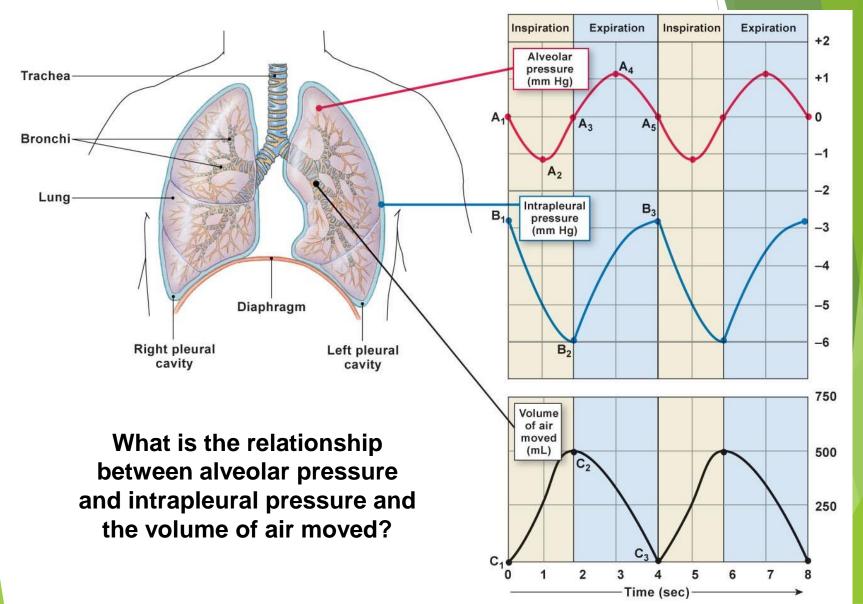

Inspiration

- Occurs as alveolar pressure drops below atmospheric pressure... becomes less than atmospheric and thus we call this pattern as: <u>negative pressure</u> <u>breathing</u>
 - ► For convenience atmospheric pressure = 0 mm Hg
 - ► A negative value (-) indicates pressure below atmospheric P
 - ► A positive (+) value indicates pressure above atmospheric P
 - At the start of inspiration (time = 0),
 - atmospheric pressure = alveolar pressure=zero mmH
 - ▶ No driving force (Ohm's)...No net movement of gases!
 - ▶ At time 0 to 2 seconds
 - Expansion of thoracic cage and corresponding pleural membranes and lung tissue causes alveolar pressure to drop to -1 mm Hg (negative)
 - Now...air enters the lungs down the partial pressure gradient

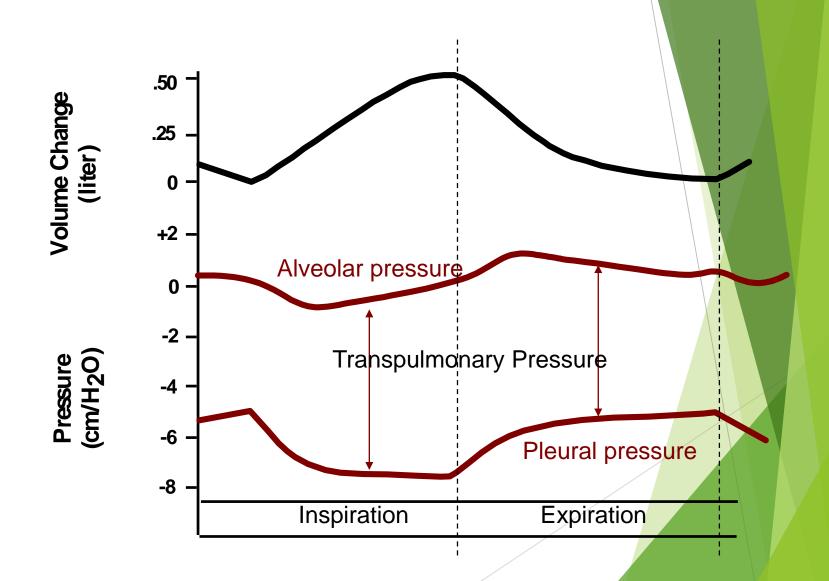
Respiratory pressures



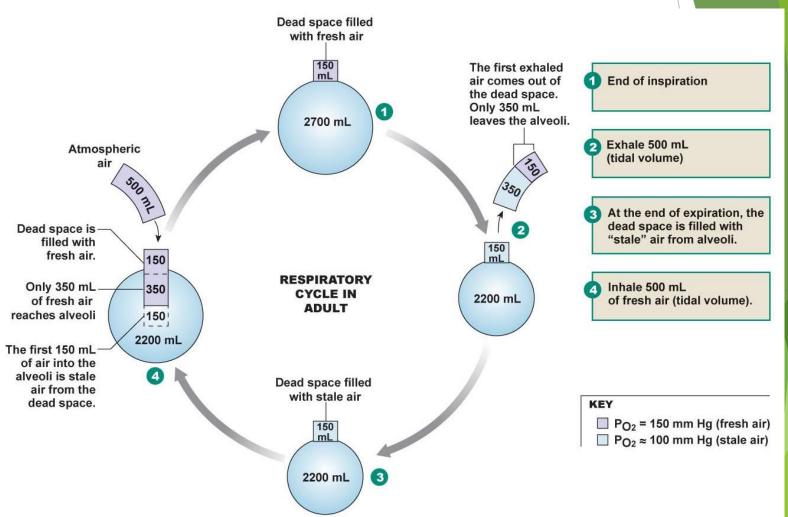
Besides the diaphragm (only creates about 60-75% of the volume change) what are the muscles of inspiration & expiration?

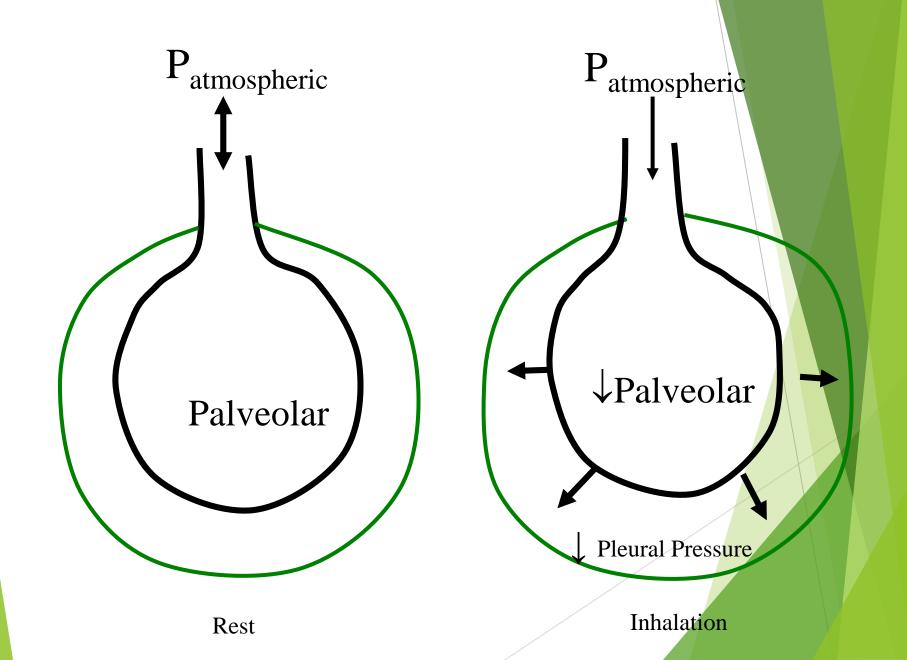


(a) At rest, diaphragm is relaxed.

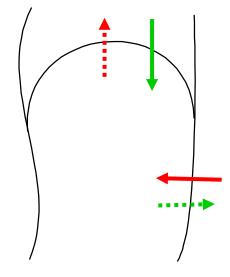

(b) Diaphragm contracts, thoracic volume increases.

(c) Diaphragm relaxes, thoracic volume decreases.



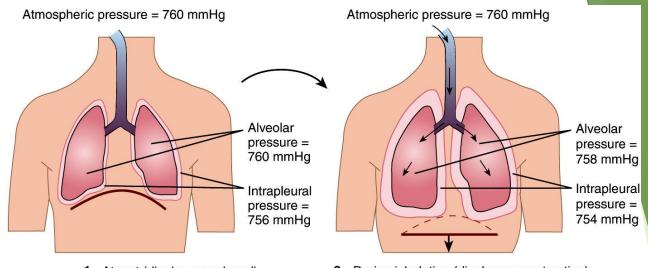

- Expiration
 - Occurs as alveolar pressure elevates above atmospheric pressure due to a shrinking thoracic cage
 - ► At time 2-5 seconds
 - Inspiratory muscles relax, elastic tissue of corresponding structures initiates a recoil back to resting state
 - ► This decreases volume and correspondingly increases alveolar pressure to 1 mm Hg
 - ► This is above atmospheric pressure, causing...?
 - ► At time 5 seconds
 - ► Atmospheric pressure once again equals alveolar pressure and there is no net movement

- What are the different respiratory patterns?
 - Quiet breathing (resting)
 - ► Forced inspirations & expirations (exercise)
- ▶ Respiratory volumes follow these respiratory patterns...
- ▶ Definition of HYPERVENTILATION is when alveolar ventilation is more than CO_2 production \rightarrow decrease $PaCO_2$
- ► HYPOVENTILATION is when alveolar ventilation is LESS than CO2 production → increase PaCO2


The relationship between minute volume (total pulmonary ventilation) and alveolar ventilation & the subsequent "mixing" of air

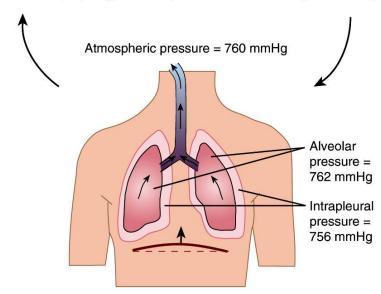
Mechanics Of Respiration

- Expiration
 - Active
 - Abdominals
 - decrease chest volumes



Active exhalation abdominal compression

Active inspiration abdominal relaxation


Exhalation/ expiration

- Pressure in lungs greater than atmospheric pressure
- Normally passive muscle relax instead of contract
 - Based on elastic recoil of chest wall and lungs from elastic fibers and surface tension of alveolar fluid
 - Diaphragm relaxes and become dome shaped
 - External intercostals relax and ribs drop down
- Exhalation only active during forceful breathing

1. At rest (diaphragm relaxed)

2. During inhalation (diaphragm contracting)

3. During exhalation (diaphragm relaxing)

Figure 23.14 Tortora - PAP 12/e Copyright © John Wiley and Sons, Inc. All rights reserved.

Copyright 2009, John Wiley & Sons, Inc.

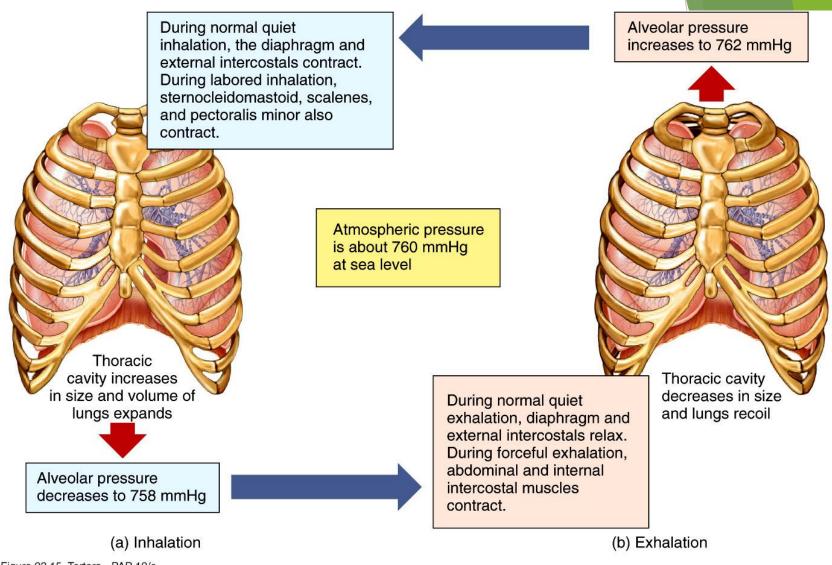
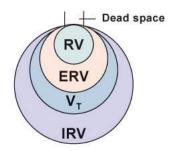


Figure 23.15 Tortora - PAP 12/e Copyright © John Wiley and Sons, Inc. All rights reserved.

Copyright 2009, John Wiley & Sons, Inc.

Respiratory Minute ventilation

- ► Respiratory Minute ventilation RMV (respiratory rate times tidal volume 0.5 L * 12=6L/min). if you remember how the cardiac output is calculated then it is easy for you to understand
- ▶ Q=HR * SV... it is the same principle
- ► RMV=RR * V_T
- Anatomical dead space ventilation and alveolar ventilation
- RMV= ADS ventilation + alveolar ventilation


PFT Pulmonary Function Tests

- Lung Volumes and Capacities
- Other tests will be discussed too. Diffusing Capacity of the Lung for Carbon Monoxide will be also discussed, but with Gas Exchange lecture

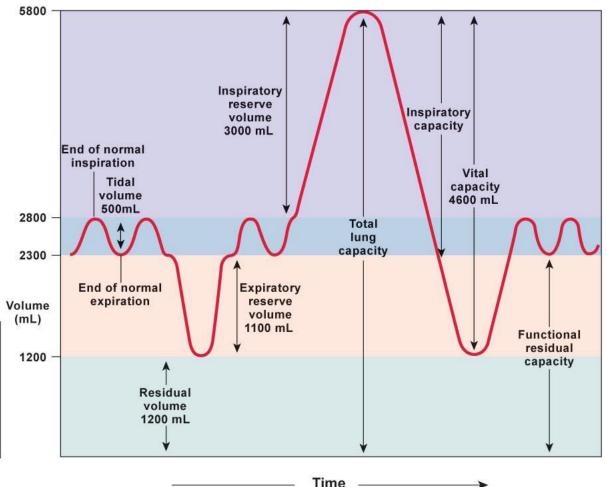
Ventilation e-learning

A spirometer tracing showing lung volumes and capacities.

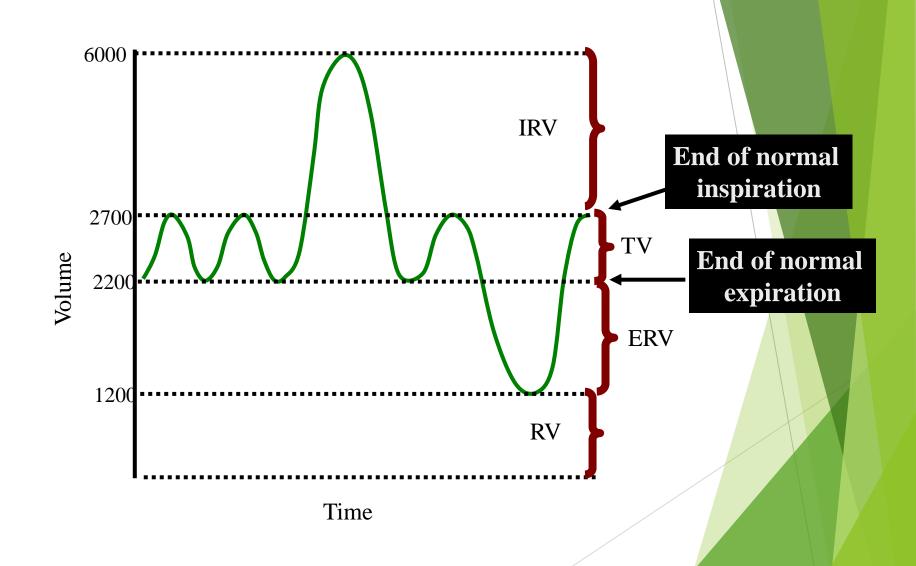
The four lung volumes

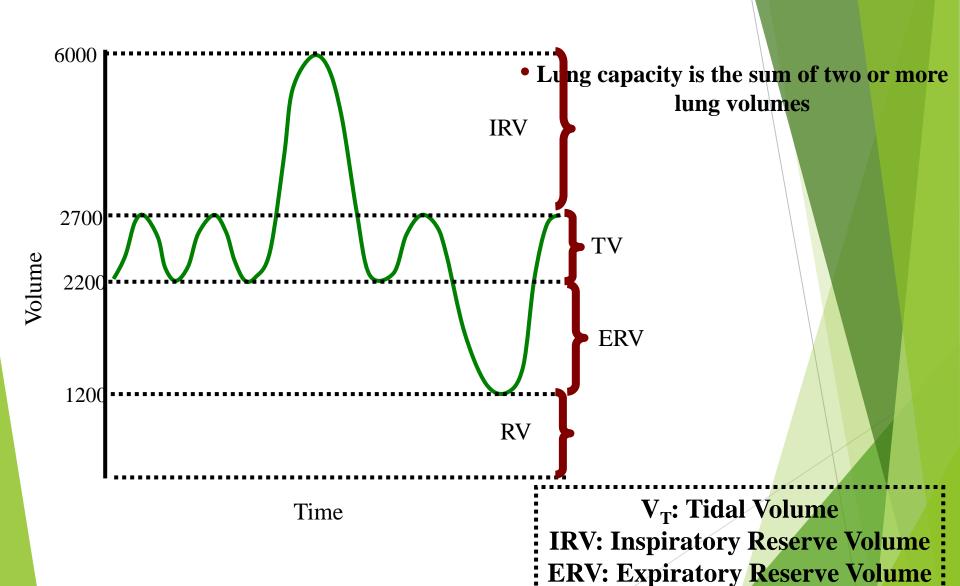
KEY

RV = Residual volume

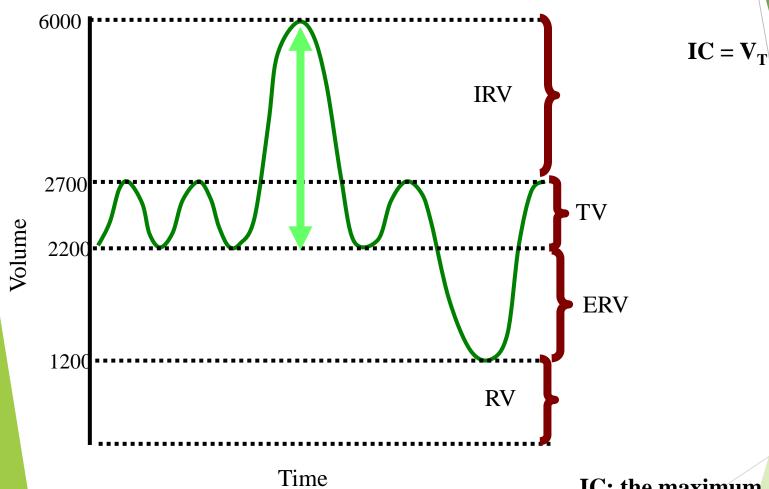

ERV = Expiratory reserve volume

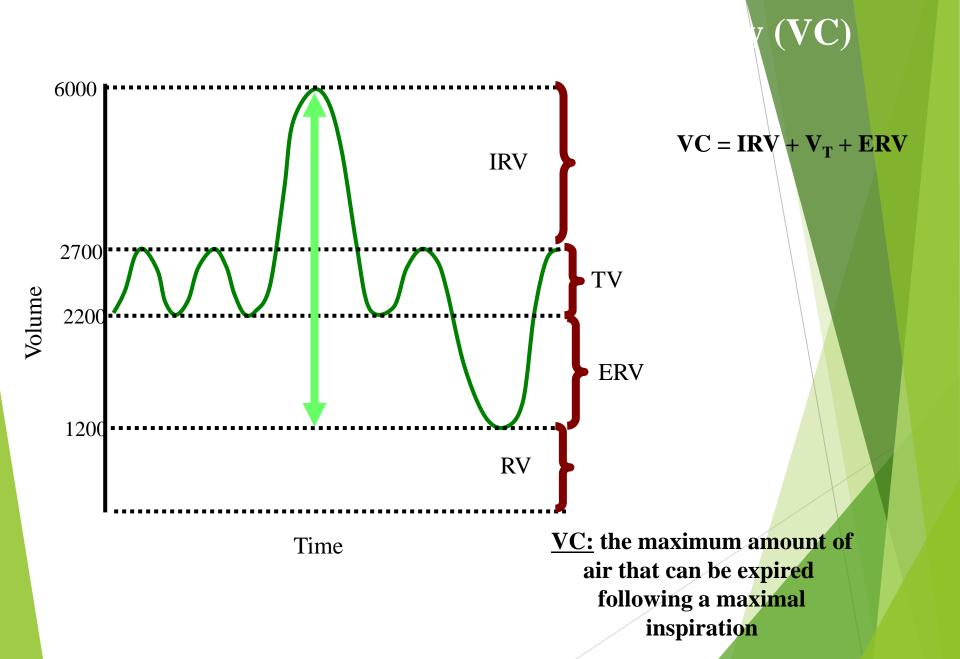
V_T = Tidal volume


IRV = Inspiratory reserve volume

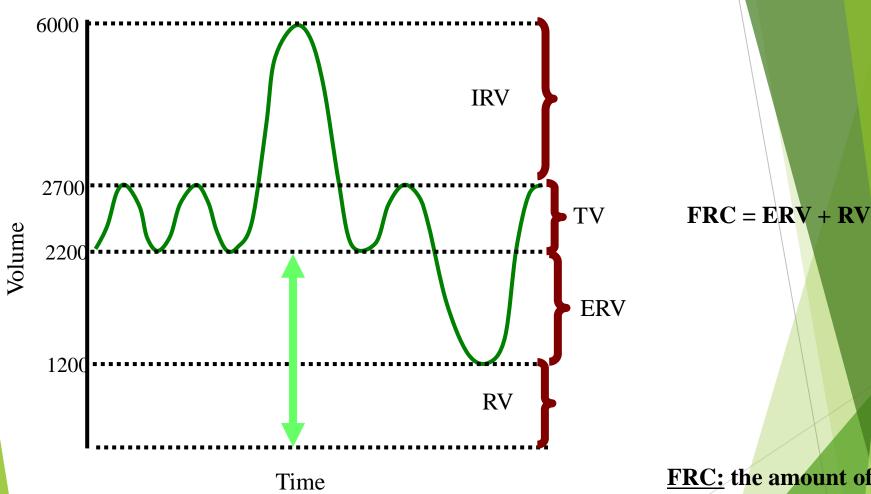

Pulmonary volumes

		Males	Females
Vital _ capacity	IRV	3000	1900 Inspirator
	V _T	500	500 ∫ capacity
	ERV	1100	700 Functiona
Residual volume		1200	1100 capacity
		5800 mL	4200 mL

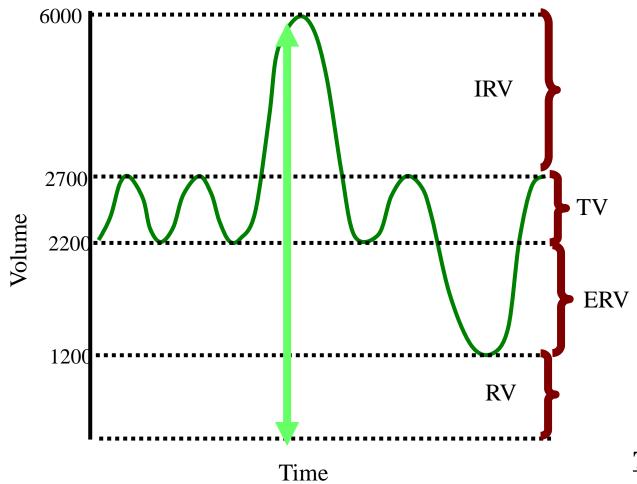

Capacities are sums of 2 or more volumes.


RV: Residual Volume

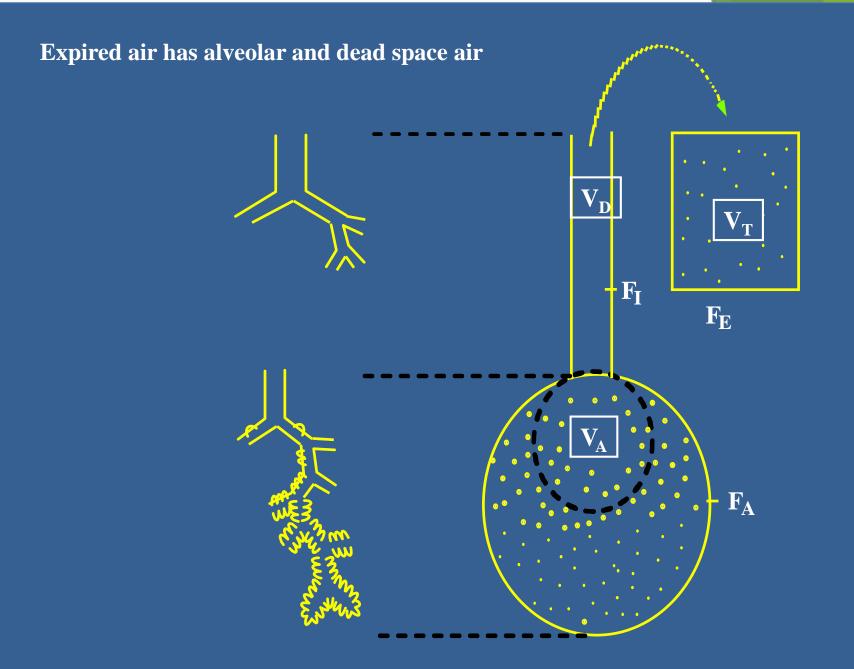
apacity (IC)



 $IC = V_T + IRV$

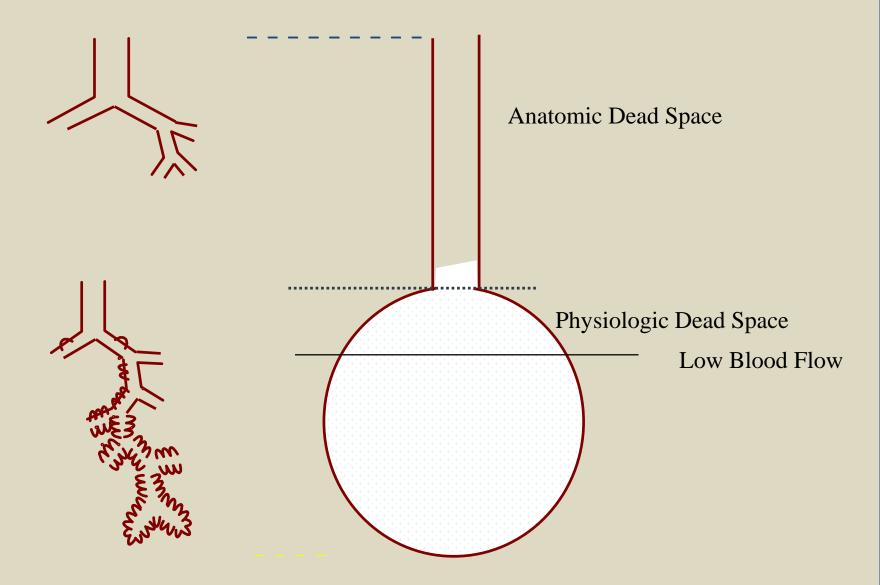

IC: the maximum amount of air that can be inspired following a normal expiration

FRC: the amount of air remaining in the lungs following a normal expiration.


 $TLC = IRV + V_T + ERV + RV$

TLC: the amount of air in the lungs at the end of a maximal inspiration.

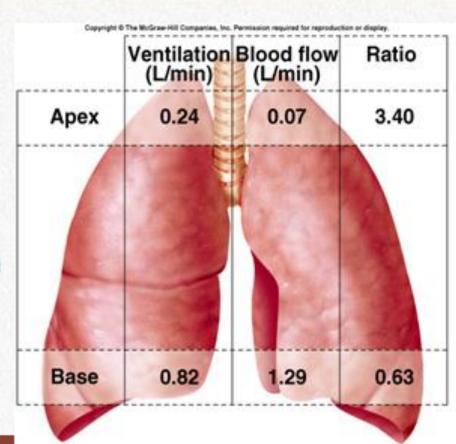
ation


► Minute ventilation or RMV: Total amount of air moved into and out of respiratory system per minute

- Respiratory rate or frequency RR: Number of breaths taken per minute
- Anatomic dead space: Part of respiratory system where gas exchange does not take place ≈ 150 ml in an adult (2 ml/kg)
 - ▶ Physiological dead space=ADS + alveolar wasted volume
- Alveolar ventilation: How much air per minute enters the parts of the respiratory system in which gas exchange takes place

- ► ANATOMICAL: Anatomical dead space is the volume of air that does not participate in gas exchange
 - ► 150 ml (or 2 ml/Kg body weight)
- ► PHYSIOLOGICAL
 - ▶ Depends on ventilation-perfusion ratio (V/Q)
 - ► Physiologic Dead Space = Anatomic Dead Space + alveolar dead space

$$V_D = VT \left[\frac{PaCO_2 - PECO_2}{PaCO_2} \right]$$


V/Q ratio and the generation of ADS and PDS in the apex and base

Lung Ventilation/Perfusion Ratios

Functionally:

- Alveoli at apex are underperfused (overventilated).
- Alveoli at the base are underventilated (overperfused).

Next Time...

Airway Resistance Lecture 3-4