

Physiology

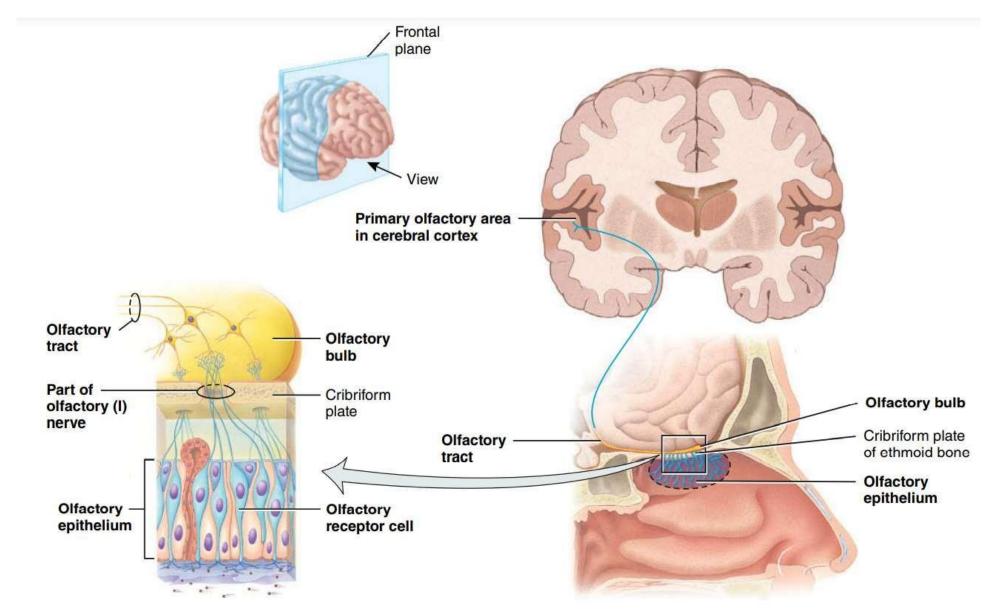
Modified (7)

Writer:Sana Al-Sokhon

Corrector: Toqa Abushanab

Doctor: Fatima Ryalat

Neurophysiology


Olfaction

Fatima Ryalat, MD, PhD
Assistant Professor, Physiology and Biochemistry Department
School of Medicine, University of Jordan

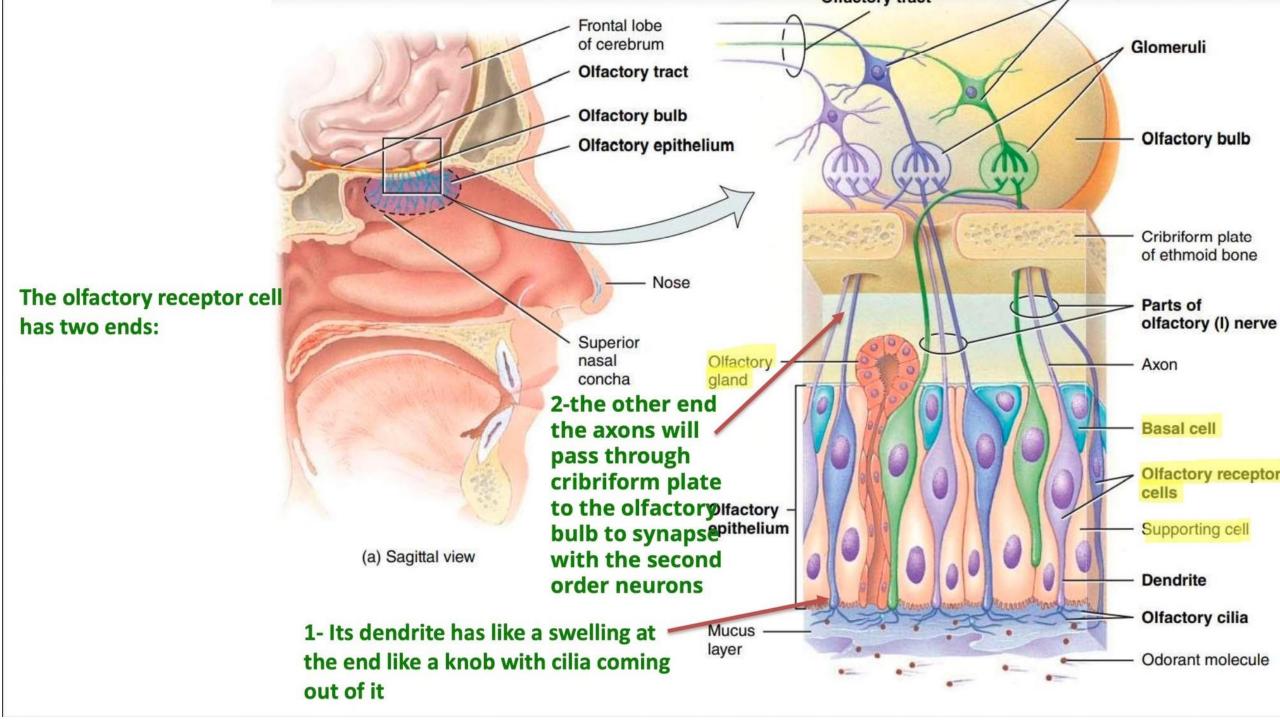
Special senses

- Olfaction (smell) and gustation (taste) are chemical senses.
- In these senses, the stimulus is a chemical substance that binds to specific receptors, initiating the perception of smell or taste.

Olfaction

Olfactory epithelium

- sensory receptors for smell are located in the olfactory epithelium,
- Olfactory epithelium (membrane) occupies the superior part of the nasal cavity, covering the inferior surface of the cribriform plate and extending along the superior nasal concha.


 The olfactory epithelium consists of three types of cells: olfactory receptor cells, supporting cells, and basal cells.

Olfactory epithelium

- Supporting cells (sustentacular cells) are columnar epithelial cells lined with microvilli at their mucosal border and filled with secretory granules.
- Basal cells are located at the base of the olfactory epithelium and are undifferentiated stem cells that give rise to the olfactory receptor cells.
- Within the connective tissue that supports the olfactory epithelium are **Bowman's glands**, which produce mucus that moistens the surface of the olfactory epithelium and dissolves odorants so that transduction can occur.

Olfactory epithelium

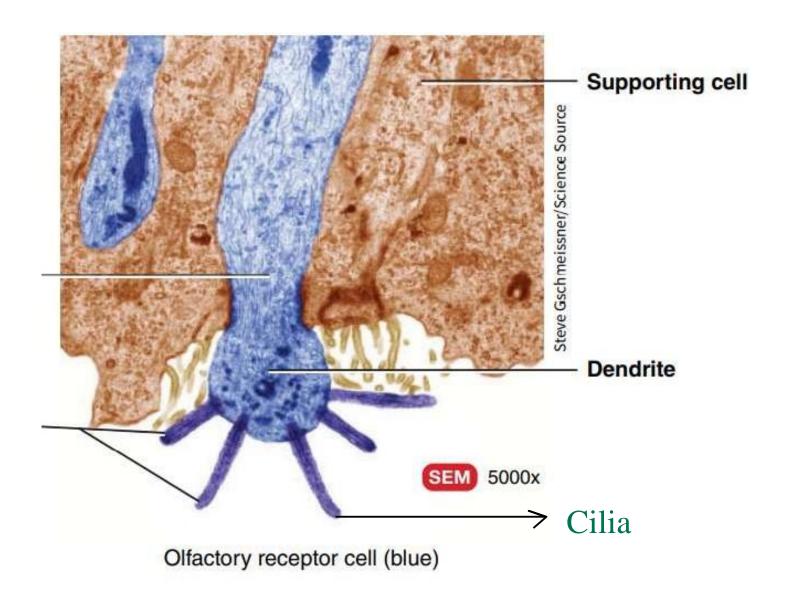
- The olfactory epithelium also contains glands that secrete mucus, which is a very important covering for the cilia that contains the receptor proteins.
- In order for any substance to be smelled it has to have two conditions :
- 1. first it has to be volatile which means it can move from the air through the nasal cavity to the olfactory epithelium. or the other way round, it can come from the mouth while you are eating food, some of these volatile molecules will come up through the pharynx to the olfactory epithelium.
- 2. for substance to be smelled it must be water soluble or slightly water soluble in order to be dissolved in this mucus layer so it can bind to the receptor.
- This implies that there are certain substances, such as natural gas, that are odorless. However, it is crucial for our safety to be able to detect gas leaks. To address this, companies add a small amount of methyl mercaptan, as little as one trillionth of a gram, to the gas. This minute quantity is sufficient for us to detect the odor and be alerted to the presence of gas.
- In general, the smell sensation or the olfaction is very sensitive; it has low threshold which means only few molecules are needed from that substance to be sensed and to be smelled

Journey of the smell:

As you can see there are many types of olfactory cells, each one of them have different olfactory receptor protein present on the cilia, we have about thousands of olfactory cells, each containing distinct olfactory receptor proteins on their cilia. In our bodies, we possess thousands of olfactory receptor proteins, enabling us to detect tens of thousands of different odorants. This implies that each substance activates specific combinations of olfactory receptor proteins. For instance, the odorant molecule of a vanilla cupcake activates two cells, while that of a chocolate cupcake activates different cells. This is how we perceive them as distinct odorants

Olfactory receptor cells

Each olfactory receptor cell is a bipolar neuron (first-order neuron of olfactory pathway) with an exposed, knob-shaped dendrite and an axon projecting through the cribriform plate that ends in the olfactory bulb. To synapse with the 2nd order neurons


Extending from the dendrite of an olfactory receptor cell are several nonmotile olfactory cilia, which are the sites of olfactory transduction.

Olfactory receptor cells

Within the plasma membranes of the olfactory cilia are olfactory receptor proteins that detect inhaled chemicals.

Chemicals that bind to and stimulate the olfactory receptors in the olfactory cilia are called odorants.

Olfactory receptor cells respond to the chemical stimulation of an odorant molecule by producing a receptor potential, thus initiating the olfactory response. This is an electron microscope image showing the olfactory receptor cell, which is the first-order neuron in this case. Here, we can see the dendrite and nonmotile cilia extending from it, with the olfactory receptor proteins present on the cilia.

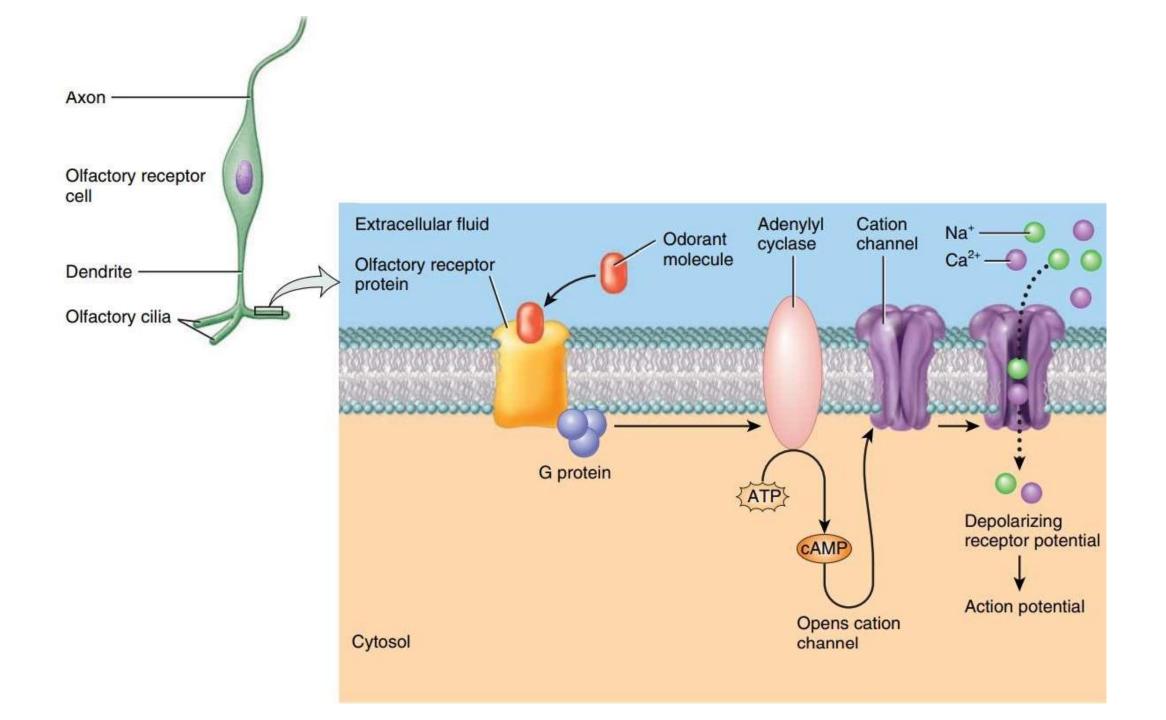
Olfactory receptors

 Olfactory receptors are many types. Each type of olfactory receptor can react to only a select group of odorants.

 Genetic studies suggest the existence of hundreds of primary odors. Our ability to recognize about 10,000 different odors probably depends on patterns of activity in the brain that arise from activation of many different combinations of the olfactory receptor cells.

Olfactory transduction

- The steps in olfactory transduction are as follows:
- 1. Odorant molecules bind to specific olfactory receptor proteins located on the cilia of olfactory receptor cells. Olfactory receptor proteins are members of the superfamily of G protein—coupled receptors, each encoded by a different gene and each found on a different olfactory receptor cell.
- 2. The olfactory receptor proteins are coupled to adenylyl cyclase via a G protein.


Olfactory transduction

• 3. Adenylyl cyclase catalyzes the conversion of ATP to cAMP. Intracellular levels of cAMP increase, which opens cation channels(mainly Na+ channels) in the cell membrane of the olfactory receptor.

• 4. The receptor cell membrane depolarizes. (more positive charges in)

If the receptor potentials reach the threshold:

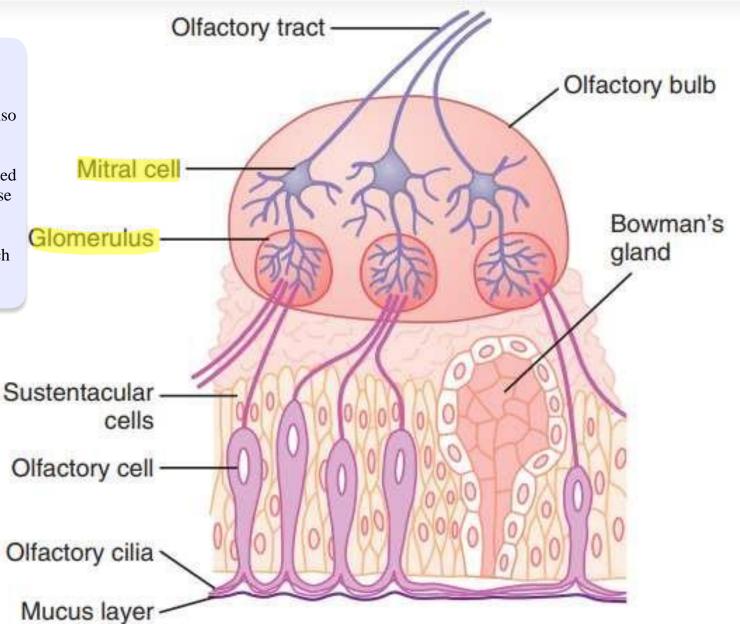
 5. Action potentials are then generated and propagated along the olfactory nerve axons toward the olfactory bulb.

Olfactory threshold

- The importance of this mechanism for activating olfactory nerves is that it greatly multiplies the excitatory effect of even the weakest odorant.
- Even a minute concentration of a specific odorant initiates a cascading effect that opens extremely large numbers of sodium channels. This process accounts for the exquisite sensitivity of the olfactory neurons to even the slightest amount of odorant.
- Olfaction, like all the special senses, has a low threshold. Only a few molecules of certain substances need to be present in air to be perceived as an odor.

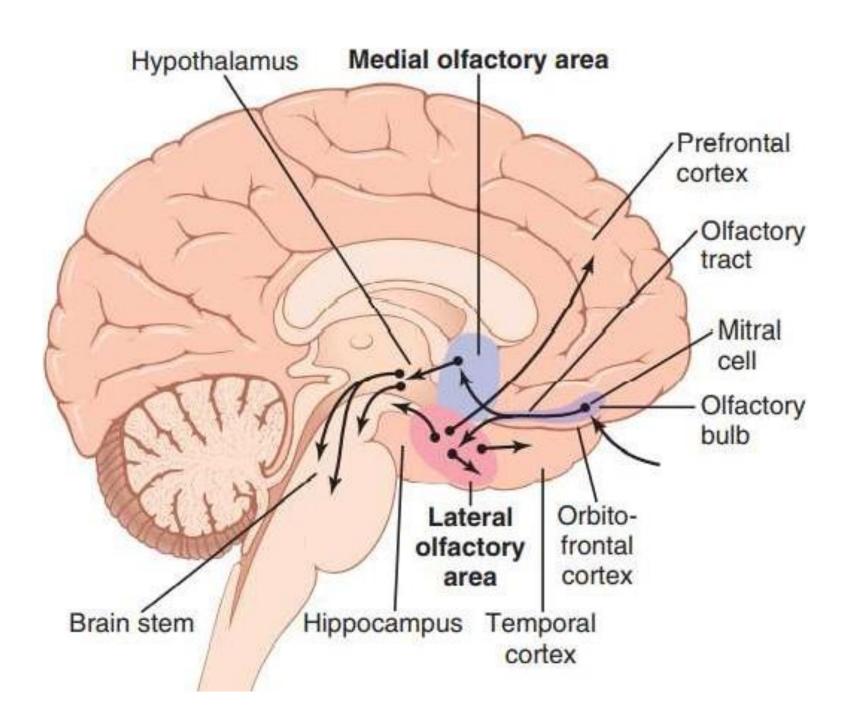
Characteristics of odorants

• There are several physical factors affect the degree of stimulation.


 First, only volatile substances that can be sniffed into the nasal cavity can be smelled.

 Second, the stimulating substance must be at least slightly watersoluble so that it can pass through the mucus to reach the olfactory cilia.

 Axons from the receptor cells leave the olfactory epithelium, pass through the cribriform plate, and synapse on apical dendrites of mitral cells (the second-order neurons) in the olfactory bulb. These synapses occur in clusters called glomeruli.


-different combinations of olfactory cells will synapse with different mitral cells and that will give us the perception or the sensation of different odorants.

 In the glomeruli, the mitral cells are arranged in a single layer in the olfactory bulb and have lateral dendrites in addition to the apical dendrites. This graph is more complex than it appears initially because it involves not only direct connections between olfactory cells and mitral cells but also the involvement of several interneurons. These interneurons include periglomerular cells and tufted cells, among others. While the precise functions of many of these cells are not yet fully understood, it is known that they play a role in processes such as lateral inhibition, which we have previously learned about.

• The olfactory bulb also contains granule cells and periglomerular cells. The granule and periglomerular cells are inhibitory interneurons that make dendro-dendritic synapses on neighboring mitral cells. The inhibitory inputs may provide lateral inhibition that "sharpens" the information projected to the CNS.

• Mitral cells of the olfactory bulb project to higher centers in the CNS. As the olfactory tract approaches the base of the brain, it divides into two major tracts, a lateral tract and a medial tract.

- The medial olfactory area or primitive olfactory system:
- Consists of a group of nuclei located in the midbasal portions of the brain immediately anterior to the hypothalamus.
- Most nuclei feed into the hypothalamus and other primitive portions of the limbic system.
- This is the brain area most concerned with <u>basic behavior and</u> <u>autonomic responses associated with olfaction</u>, such as an increase in salivation (activation of superior and inferior salivary nuclei) and gastric peristalsis/secretion in response to the smell of food (interacts with dorsal vagal nucleus in the medulla).

- The lateral olfactory area contains the largest number of fibers in the olfactory tract and is responsible for the majority of functional olfactory transmission.
- The primary olfactory cortex is the main site of <u>olfactory</u> <u>information processing</u>, through the integration of olfactory sensory information to encode, recognize, and contextualize scenarios.

The lateral olfactory area:

- Is composed mainly of the prepyriform and pyriform cortex plus the cortical portion of the <u>amygdaloid nuclei</u>.
- From these areas, signal pathways pass into almost all portions of the limbic system especially the <u>hippocampus</u>,
- which seem to be most important for learning to like or dislike certain foods depending on one's experiences with them, as well as the emotional character of odors and in the recalling of memory records.

EXTRA: The limbic system is a complex network of brain structures that are primarily involved in emotions, memory, and motivation. It is located in the central area of the brain and consists of several key structures, including the amygdala, hippocampus, hypothalamus, thalamus, and cingulate gyrus.

Affective Nature of Smell

• Smell, even more so than taste, has the affective quality of either pleasantness or unpleasantness, and thus smell is probably even more important than taste for the selection of food.

 Indeed, a person who has previously eaten food that disagreed with him or her is often nauseated by the smell of that same food on a second occasion. Conversely, perfume of the right quality can be a powerful stimulant of human emotions.

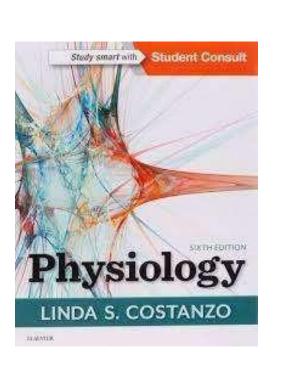
Olfaction pathway

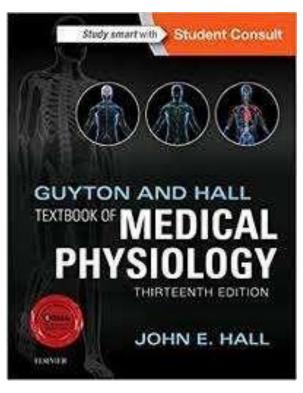
 An important feature of the lateral olfactory area is that many signal pathways from this area also feed directly into an older part of the cerebral cortex called the <u>paleocortex</u> in the anteromedial portion of the temporal lobe.

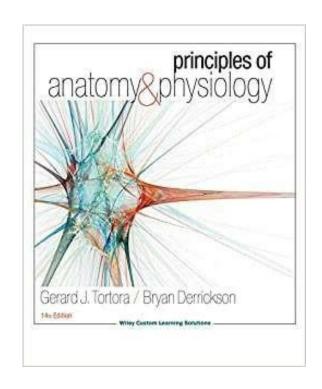
 This area is the only area of the entire cerebral cortex where sensory signals pass directly to the cortex without passing first through the thalamus.

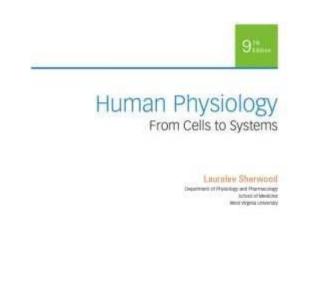
Adaptation of olfactory sensations

The adaptation may happen at two levels:


 1-The olfactory receptors adapt about 50 percent in the first second or so after stimulation. Thereafter, they adapt very little and very slowly.


Following this initial adaptation, they demonstrate minimal and gradual further adaptation.


- 2-Most of the adaptation occurs within the central nervous system, which seems to be true for the adaptation of taste sensations as well.
- The suggested neuronal mechanism for the adaptation is: Large numbers of centrifugal nerve fibers pass from the olfactory regions of the brain backward along the olfactory tract and terminate on special inhibitory cells in the olfactory bulb, the granule cells.


-When the CNS sends inhibitory feedback messages to the olfactory bulb.

References

Thank you