Neurodegenerative Diseases (3)

Neurodegenerative diseases according to the location:

- Diseases involving the hippocampus and cortex >>> cognitive changes (memory disturbances, behavior and language) >>>> dementia >>>>> Alzheimer Disease (AD), Frontotemporal Dementia (FTD), Pick Disease (subtype of FTD)
- 2. Diseases involving the **basal ganglia** >>>> movement disorders >>>> hypokinesia (Parkinson Disease) OR hyperkinesia (Huntington Disease)
- 3. Diseases involving the **cerebellum** >>>> ataxia >>> (Spinocerebellar Ataxia, Friedrich Ataxia, Ataxia Telangiectasia)
- Diseases involving the motor system >>> difficulty swallowing and respiration with muscle weakness >> (Amyotrophic Lateral Sclerosis)

Disease involving the cerebellum

Ataxia

(NOTE: Ataxia is not a specific disease, rather it is a set of symptoms describes more than one disease)

- Definition:

Ataxia is a clinical manifestation indicating dysfunction of the CNS parts that coordinate movement.

- Symptoms:
 - Lack Of Coordination
 - Eye Movement Abnormalities (Nystagmus)
 - Slurred Speech
 - Trouble Eating and Swallowing
 - Heart Problems
 - Tremors and deterioration of fine Motor Skills
 - Gait Abnormalities
 - Difficulty Walking and Poor Balance
- How to diagnose Ataxia?
 - Finger to Nose Test
 - Heel to Shin Test

1st Spinocerebellar Ataxias

- Heterogeneous group of diseases, differ in causative mutations, patterns of inheritance, age at onset, and signs and symptoms.
- Characterized by cerebellar and sensory ataxia, spasticity, and sensorimotor peripheral neuropathy.
- Affects **cerebellar cortex**, spinal cord, other brain regions, and peripheral nerves variably.
- Several forms of SCAs are caused by <u>CAG repeat expansions</u> (like HD), causing intranuclear inclusions, among other mutations.

A. Friedrich Ataxia

- Most important SCA.
- Autosomal recessive disorder.
- First decade of life.
- Symptoms:
 - · Gait ataxia, followed by hand clumsiness and dysarthria
 - Pes cavus (high arched foot)
 - kyphoscoliosis
 - High incidence of cardiac disease and diabetes
- Mutations:

GAA trinucleotide repeat expansion in Frataxin protein gene.

- Pathogenesis:
 - Frataxin protein (regulates mitochondrial iron).
 - GAA trinucleotide repeat expansion in Frataxin protein gene >> transcriptional silencing >> decreased frataxin >> mitochondrial dysfunction >> oxidative damage (due to increase in ROS).
 - The damage is not caused by the protein deposition (like other neurodegenerative diseases). (It is caused due to loss of Frataxin protein)

2nd Ataxia Telangiectasia

- Inherited disease, characterized by:
 - Cerebellar deterioration
 - Oculocutaneous telangiectasia
 - Immunodeficiency
 - Genomic instability
 - Acute sensitivity to ionizing radiation
 - Predisposition to malignancy

Disease involving the motor system

1st Amyotrophic Lateral Sclerosis

- Death of <u>lower motor neurons</u> in the spinal cord and brain stem as well as <u>upper motor neurons</u> in the motor cortex.
- Loss of lower motor neurons results in denervation of muscles >> muscular atrophy (amyotrophy), weakness, and fasciculations.
- Loss of upper motor neurons results in >> <u>paresis</u>, <u>hyperreflexia</u>, <u>spasticity</u>, along with a <u>Babinski</u> sign.
- Upper motor neuron loss >> Degeneration of the corticospinal tracts in the lateral portion of the spinal cord (lateral sclerosis)
- Sensation usually is unaffected, but cognitive impairment is not infrequent.
- Male predominance.
- 5th decade and after.
- Most cases are **Sporadic**, 10% are familial (Autosomal Dominant, early onset).
- Pathogenesis:
 - -There are many mutations that cause ALS, most important one is:
 - (1) Mutation in the superoxide dismutase gene, SOD1, on chromosome 21.

Generate abnormal misfolded protein >>> trigger the unfolded protein response >>>> apoptotic death of neurons.

- Other Mutations (less important):
 - (2) Hexanucleotide repeat expansion of C9orf72 (familial forms)
 - (3) **TDP43** (also associated with FTLD (Frontotemporal Lobe Dementia))
 - (4) FUS gene
- There is genetic and clinical overlap Between ALS and FTLD.
- Symptoms:
 - Begins with subtle asymmetric distal extremity weakness.
 - As the disease progresses, muscle strength and bulk diminish (Muscular Atrophy).
 - Involuntary contractions of individual motor units (fasciculations).
 - Eventually involves the respiratory muscles >>> recurrent bouts of pulmonary infection (the usual cause of death).
- Most patients exhibits both upper and lower motor neuron disease (patients can have disease in one of them, not both).

A. Bulbar Amyotrophic Lateral Sclerosis

- Degeneration of the lower brain stem's cranial motor nuclei.
- There are abnormalities of swallowing and speaking.
- Morphology:
 - Macroscopically:
 - 1. Anterior Horn of the spinal cord is thin and gray.
 - 2. In severe cases: atrophy of precentral gyrus (motor cortex).
 - Microscopically:
 - 1. Reactive gliosis and loss of anterior horn neurons (throughout the spinal cord).
 - 2. Cytoplasmic inclusions that contain TDP43.
 - 3. Skeletal muscles show neurogenic atrophy.
 - In case of Bulbar Amyotrophic Lateral Sclerosis:
 - 1. Similar changes in motor cranial nerve nuclei.
 - 2. Sparing of those supplying the extraocular muscles.

The End of The Neurodegenerative Diseases Topic

Acquired Metabolic and Toxic Disturbances

- Common causes of neurologic illnesses.
- Because of its high metabolic demands, the brain is particularly vulnerable to **nutritional diseases**, alterations in metabolic state (**metabolic disorders**) and **Toxins**.

Nutritional Diseases

1st Thiamine Deficiency

- Causes:
 - Chronic alcoholism
 - Gastric disorders or gastric bypass surgery
 - Persistent vomiting
- Symptoms:
 - 1. Beriberi (Systemic manifestations)
 - 2. Wernicke encephalopathy (Neurologic manifestations)
 - Abrupt onset of confusion
 - Ataxia
 - Abnormalities in eye movement
- Treatment (Tx): Thiamine Supplement
- Delayed Tx: irreversible profound memory disturbance (Korsakoff syndrome)
 - → Wernicke-Korsakoff syndrome (The symptoms of Thiamine deficiency + Delayed Tx)
- Morphology:
- 1. Foci of hemorrhage and necrosis in (mammillary bodies & adjacent to the 3rd and 4th ventricles).
- 2. Later, cystic space with hemosiderin-laden macrophages.
- 3. **Dorsomedial nucleus of thalamus** lesions best correlates with the memory disturbance in Korsakoff syndrome.

2nd Vitamin B12 Deficiency

- Anemia + Neurologic deficits.
- **Subacute combined degeneration of the** spinal cord (ascending and descending tracts of the spinal cord are affected).
- Symptoms develop over weeks.

- Early clinical signs:
 - Mild ataxia.
 - Lower-extremity numbness.
- Can progress to:
 - Spastic weakness of the lower extremities.
 - Complete paraplegia (poor outcome despite Tx).

Metabolic Disorders

1st Hypoglycemia

- Effect resembles those of global hypoxia (anoxia).
- Hippocampal neurons are particularly susceptible.
- Cerebellar Purkinje cells are relatively spared.
- If level and duration of hypoglycemia are sufficiently severe >> widespread injury.

2nd Hyperglycemia

- Caused by uncontrolled diabetes mellitus.
- Hyperglycemic state can be associated with ketoacidosis or hyperosmolar coma.
- Patients develop confusion, stupor, and eventually coma due to dehydration of neuronal cells.
- Rapid correction can produce severe cerebral edema (correct gradually).

3rd Hepatic Encephalopathy

- Decreased hepatic function leads to depressed levels of consciousness or coma.
- In early stages: flapping tremor (Asterixis).
- Elevated levels of ammonia which liver normally clears, inflammation and hyponatremia cause the changes in brain function.
- Pathogenesis:
 - In the CNS, ammonia metabolism occurs only in astrocytes by glutamine synthetase.
 - Liver dysfunction >> elevated ammonia >> astrocytes in the cortex and basal ganglia develop swollen pale nuclei (due to increase in function).
 - Alzheimer type II cells: astrocytes in the cortex and basal ganglia with swollen pale nuclei. (No relation between Alzheimer type 2 cells and Alzheimer Disease, it is just a name)

Toxic Disorders

1st Ethanol

Acute intoxication is reversible.

- Excessive intake leads to profound metabolic disturbances (brain swelling and death).

Chronic alcoholism: in 1% of cases, cerebellar dysfunction (due to atrophy in the anterior vermis)

- Symptoms of cerebellar dysfunction (due to atrophy in the anterior vermis)
 - Truncal ataxia
 - Unsteady gait
 - Nystagmus

Done By: Yahya Mohammed and Tareq Hajeer

Summary

Ataxia

- Definition: Clinical sign indicating CNS dysfunction affecting movement coordination.
- Symptoms: Lack of coordination, nystagmus, slurred speech, swallowing difficulties, tremors, gait abnormalities.

Spinocerebellar Ataxias (SCAs)

- Features: Heterogeneous group with various genetic mutations, inheritance patterns, and onset ages.
- Common Symptoms: Cerebellar and sensory ataxia, spasticity, peripheral neuropathy.
- Caused by many mutations, most important one is <u>CAG repeat expansions</u> (like HD), causing intranuclear inclusions, among other mutations.
- The most important SCA is Friedreich Ataxia.

Friedreich Ataxia

- Autosomal recessive disorder with onset in <u>childhood</u>, characterized by gait ataxia, hand clumsiness, pes cavus (high arched foot), and kyphoscoliosis.
- Caused by GAA trinucleotide repeat expansion in Frataxin protein gene.
- The damage is not caused by the protein deposition (like other neurodegenerative diseases). (It is caused due to loss of Frataxin protein).

Ataxia Telangiectasia

 Characteristics: Inherited disorder with cerebellar deterioration, immunodeficiency, and predisposition to <u>malignancy</u>.

Amyotrophic Lateral Sclerosis (ALS)

- Pathophysiology: Death of lower and upper motor neurons, leading to UMNL and LMNL symptoms.
- Genetics: Caused by mutations in various genes, most important one is SOD1, leading to misfolded proteins and neuronal death. TDP43 mutation also cause ALS (like FTLD)
- Clinical Presentation: Asymmetric distal extremity weakness and atrophy. May progress to involve respiratory muscle (the usual cause of death). Bulbar symptoms (swallowing, speech) if disease affect the cranial nerves nuclei.

Summary

Nutritional Diseases

Thiamine Deficiency

- Causes: Chronic alcoholism, gastric disorders, persistent vomiting.
- Symptoms: Beriberi (systemic manifestations), Wernicke encephalopathy (neurologic manifestations).
- Treatment: Thiamine supplement; delayed treatment can lead to irreversible memory disturbance (Korsakoff syndrome).
- Morphology: Hemorrhage and necrosis foci, cystic spaces in mammillary bodies and adjacent areas.

Vitamin B12 Deficiency

- Causes anemia and neurologic deficits.
- Leads to subacute combined degeneration of the spinal cord.

Metabolic Disorders

Hypoglycemia

- <u>Hippocampal</u> neurons are particularly vulnerable.
- Prolonged and severe hypoglycemia can cause widespread neuronal injury.

Hyperglycemia

- Associated with uncontrolled diabetes mellitus.
- Can lead to confusion, stupor, and coma due to neuronal dehydration.
- Rapid correction may result in cerebral edema; correct gradually.

Hepatic Encephalopathy

- Decreased hepatic function leads to depressed consciousness.
- Early signs include flapping tremor (asterixis) and elevated ammonia levels.
- Pathogenesis: Liver dysfunction >> elevated ammonia >> astrocytes in the cortex and basal ganglia develop swollen pale nuclei (Alzheimer Type 2 cells).

Toxic Disorders

Ethanol

- Acute intoxication is reversible; excessive intake can lead to brain swelling and death.
- Chronic alcoholism may cause cerebellar dysfunction.