Rawan Mohammed

# **CNS Tumors 2:**

# <u> Glioblastomas (IDH-Wild-Type, Grade 4)</u>

## -Definition:

-Diffuse glioma that is IDH-wildtype and **H3** wildtype and has one or more of the following histologic or genetic features:

-Microvascular proliferation

-Necrosis

-TERT promoter mutation

-EGFR gene amplification

-combined **gain** of entire **chromosome 7** and **loss** of entire **chromosome 10** [+7 /-10]

-The **most common malignant glioma** (50% of all primary malignant brain tumors in adults). -**Always grade 4** (no lower grade precursor)

-Age: 6th-8th decades of life

-Site: <u>cerebral hemispheres</u> (temporal , parietal, frontal lobes, basal ganglia and thalamus) -Radiology: <u>ring enhancing lesion</u>

## -Clinically:

-rapid progression

-Seizures, neurocognitive impairment, neursea, vomiting, and headache -Rapid infiltration of the corpus callosum with growth to the contralateral hemisphere leading to bilateral symmetrical lesion <u>(butterfly glioma)</u>

## -Prognosis:

#### -Very Poor even with resection

-chemotherapy and radiotherapy the median survival is only about **15-18 months**.

#### -Macroscopic:

-variation in the gross appearance of the tumor from region to region is characteristic (was called

#### glioblastoma multiforme)

-Some areas are firm and white, others are soft and yellow (due to tissue necrosis)





-others show regions of cystic degeneration and hemorrhage.

#### -Microscopic:

#### -Similar to astrocytoma

-IDH- mutant

-grade 4 with High cellularity

-Prominent nuclear atypia

-Brisk mitotic activity and

-Necrosis: <u>irregular</u> zones of necrosis surrounded by dense accumulations of tumor cells

#### (palisading necrosis)

#### <u>-OR...</u>

-microvascular proliferation:

-the presence of abnormal vessels with walls composed of 2  $\geq$  layers of vascular wall cells.

-The presence of any of the following Molecular features (even in the absence of necrosis or microvascular proliferation) lead to the designation of glioblastoma, IDH wildtype, grade 4:

- -The presence of **TERT** promoter mutation
- -EGFR gene amplification
- +7/-10 chromosome copy number changes

# <u>Oligodendroglioma (IDH-MUTANT, &</u> <u>1p/19q-Co-deleted)</u>

## -Definition:

-A diffusely infiltrating, slow-growing glioma with IDH1 or IDH2 mutation and codeletion of chromosomal arms **1p and 19q.** 

-5-15% of gliomas -Age at diagnosis: 40-50 yrs.

## -Location:

-mostly in the cerebral hemispheres: -mainly in the **frontal** or

-temporal lobes

-white matter.

-The combination of surgery, chemotherapy, and radiotherapy yields an average survival of:





-10-20 years for WHO grade 2.

-5-10 years for WHO grade 3.

-Grade 3 is more aggressive than grade 2 oligodendroglioma

-When corrected for tumor grade, oligodendrogliomas (CNS WHO grade 2,3) Have best prognosis among diffuse glial tumors

-NO grade 1 OR 4 oligodendroglioma

#### -Macroscopic

-infiltrative tumors with blurring of gray matter-white matter boundary.

- +/- gelatinous gray mass, cysts, focal hemorrhage, and calcification.

## -Microscopic:

-sheets of regular uniform cells resembling oligodendrocytes -spherical nuclei containing finely granular chromatin (salt and pepper)

-The nuclei are surrounded by a clear halo of cytoplasm  $\rightarrow$  **fried-egg** appearance.

-delicate network of "**chicken-wire**"- like anastomosing capillaries

-Calcification up to **90%** of cases.

-Mitotic activity usually is absent or low (Ki67<5%)

-<u>No</u> spontaneous necrosis

-<u>No</u> microvascular proliferation







# <u> Oligodendroglioma (IDH-mutant & 1p/19q- Codeleted, Grade 3)</u>

# -Definition:

- An IDH-mutant and **1p/19q-codeleted** oligodendroglioma with focal or diffuse histological features of anaplasia (in particular, pathological microvascular proliferation and/or <u>brisk</u> mitotic activity **with or without necrosis**).



# IDHm 1p/19q-codel Oligodendrogliomas, grades 2-3

| Essential diagnostic criteria for<br>oligodendroglioma, IDH-mutant and 1p/19q-codeleted, WHO grade 2 | Essential diagnostic criteria for<br>oligodendroglioma, IDH-mutant and 1p/19q-codeleted, WHO grade 3                                             |
|------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|
| A diffuse glioma                                                                                     | A diffuse glioma                                                                                                                                 |
| WITH                                                                                                 | WITH                                                                                                                                             |
| an IDH1 codon 132 or IDH2 codon 172 missense mutation*                                               | an IDH1 codon 132 or IDH2 codon 172 missense mutation*                                                                                           |
| AND                                                                                                  | AND                                                                                                                                              |
| combined whole arm deletions of 1p and 19q                                                           | combined whole arm deletions of 1p and 19q                                                                                                       |
| AND                                                                                                  | AND                                                                                                                                              |
| absence of histological features of anaplasia.                                                       | histological features of anaplasia, including brisk mitotic activity and/or pathological<br>microvascular proliferation with or without necrosis |
|                                                                                                      | AND/OR                                                                                                                                           |
|                                                                                                      | homozygous CDKN2A deletion**.                                                                                                                    |

# Circumscribed astrocytic gliomas

# Pilocytic Astrocytoma, WHO grade 1

-Relatively **benign** tumor

-Age at presentation: children and young adults.

## -Location:

-**cerebellum (especially in children)** > <u>Optic</u> nerve> Midline locations: Brainstem, optic chiasm/ hypothalamus, basal ganglia > Spinal cord> Cerebral hemispheres: -**Rare in children** but happens in adults

## -Clinically:

-mass effect,

#### -Hydrocephalus,

#### - increased intracranial pressure

-Treatment: Well circumscribed tumor curable with complete resection

## -Molecular profile:

-activating mutations or translocations involving the gene encoding the **BRAF**  $\rightarrow$  resulting in activation of the **MAPK** signaling pathway. -do **NOT** have mutations in <u>IDH1 and IDH2</u>, supporting their distinction from the adult type low-grade diffuse gliomas

## -Macroscopic:

-<u>well circumscribed</u> (**discrete**) Cystic tumor

- +/- calcifications

#### -Macroscopic:



-bipolar cells with long, thin **GFAP** positive "<u>hairlike</u>" processes

# -Rosenthal fibers:

-brightly eosinophilic <u>corkscrew</u> shaped structures within the astrocytic processes

-made of Can be physiologic (gliosis) or pathologic (PA) and <u>Alexander disease</u>

#### -eosinophilic granular bodies:

-<u>rounded hyaline droplets</u> in cytoplasm of astrocytes seen in **PA** and ganglion-cell tumors -**microcysts** are often present -<u>necrosis</u> and <u>mitoses</u> are <u>rare</u>.





# <u>Ependymoma (Grade 2 & 3)</u>

## -Definition:

-glioma, Mostly arise next to the ependyma- lined ventricular system, including the central canal of the spinal cord.

## -Location:

-<u>posterior fossa</u>:

-near the **4th ventricle,** 

accounting for 5-10% of tumors in the **first two decades** of life <u>-supratentorial</u>

-Spinal: the most common location in adults and in patients with NF2

#### -Age:

-In the **first 2 decades** of life; near the **4th ventricle** (post. Fossa) accounting for 5-10% of primary brain tumors in this age group.

-In adults the spinal cord and supratentorial ependymomas occur with almost equal frequency

-The clinical outcome for completely resected **supratentorial** and s**pinal ependymomas** is <u>better</u> than for those in the **posterior fossa** 



# -Ependymoma, WHO grade 2, microscopic:

-uniform small cells with round to oval nuclei and granular chromatin in a fibrillary background
-low cellularity
-low mitotic count
-No necrosis or MVP
-Cilia and microvilli are seen on ultrastructural examinations

# -Ependymoma WHO grade 2, Morphology:

-Tumor cells may form glandlike structures (rosettes)  $\rightarrow$  Rosette formation:

#### -Ependymal rosettes:

-**diagnostic hallmark** of ependymoma (25%)

- tumor cells arranged around a **central canal or lumen** that resemble the embryologic ependymal canal,

Ependymal rosettes

with long, delicate processes extending into a lumen

#### - perivascular pseudorosettes:

-not specific for ependymoma (seen in

**glioblastoma and medulloblastoma**) -tumor cells radially arranged around vessels.

-Called "<u>pseudo</u>" because the central structure is not formed by the tumor itself, but instead represents a **native, non-neoplastic element** 



# <u>Anaplastic ependymomas, WHO grade 3:</u>

# -Show less evident ependymal differentiation

-brisk mitotic rates, and microvascular proliferation carry <u>more prognostic</u> <u>impact</u> than necrosis and atypia.

