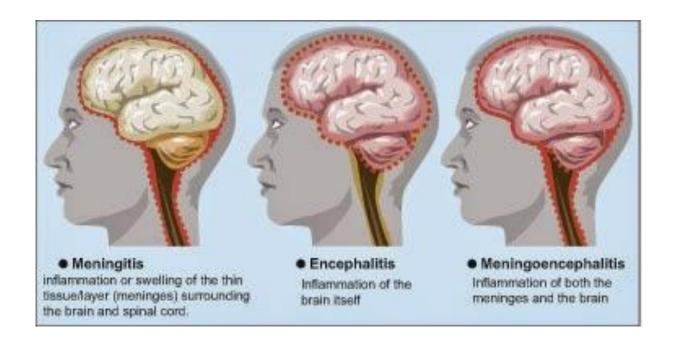
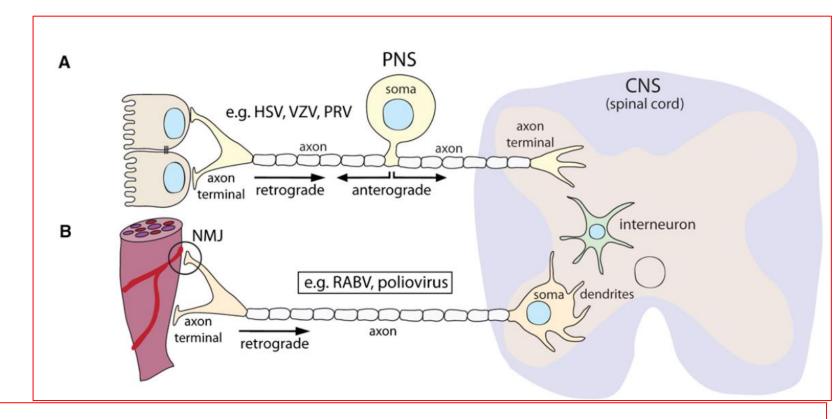

Microbiology of the central nervous system

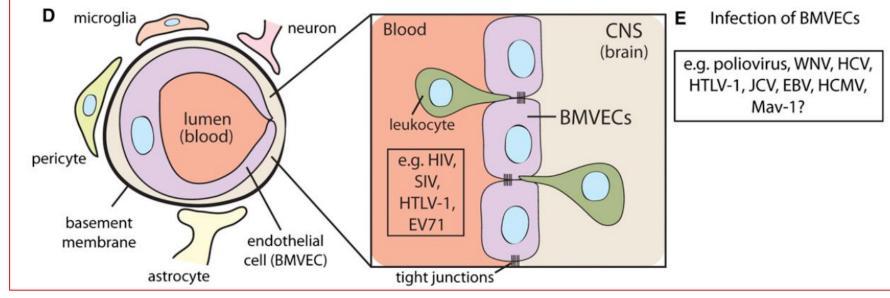
Anas Abu-Humaidan M.D. Ph.D.


Overview

In this lecture we will discuss the following:

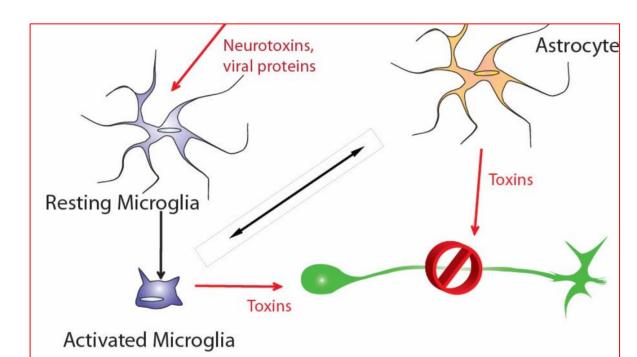
- Encephalitis
- Transmissible spongiform encephalopathies


What is encephalitis and how is it different from meningitis?

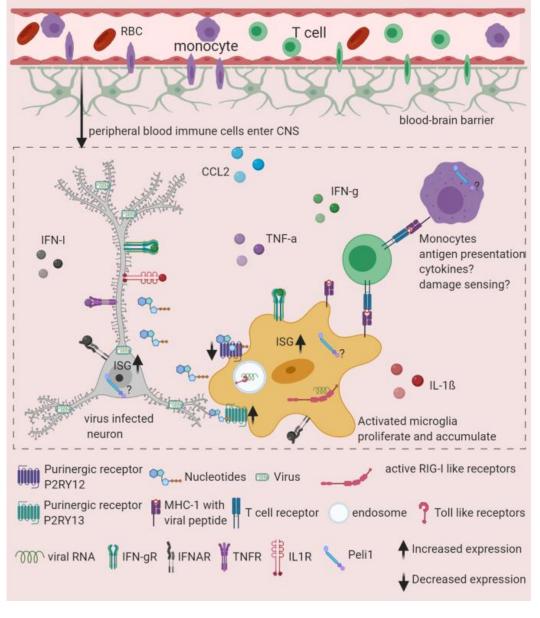

- Encephalitis is an inflammation of the brain parenchyma that arises from penetration of the blood-brain barrier or overlying meninges.
- In meningitis the inflammatory response is limited largely to the meninges.
- Meningitis is more common than encephalitis, and the meninges appear to play a
 protective role in limiting pathogen spread to the CNS.

Viral spread to the CNS

- Invasion of Sensory and motor Nerve Endings.
- Infection of Brain
 Microvascular
 Endothelium
- Invasion by Infected
 Circulating Leukocytes



Virus Induced Immune-Mediated CNS Pathogenesis


Synchronous Neutrophil Extravasation During VSV Encephalitis

Virus Induced Immune-Mediated CNS Pathogenesis

- Microglia, the innate immune cells that reside in the CNS parenchyma, deploy innate immune mechanisms to control virus spread shortly after CNS infection.
- Microglia are nonredundant antigen-presenting cells in the CNS that regulate adaptive immune responses after infection.
- Microglia are involved in CNS damage following the acute phase of viral encephalitis, which does not stop after virus elimination from the CNS.

The roles of microglia in viral encephalitis: from sensome to therapeutic targeting https://www.nature.com/articles/s41423-020-00620-5#Sec9

How do encephalitis patients present?

In addition to **fever** and **headache**, and symptoms of accompanying meningitis (if present), The patient with encephalitis commonly has;

- An altered level of consciousness (hallucinations, agitation, personality change, behavioural abnormalities), or a
- Depressed level of consciousness ranging from mild lethargy to coma,
- An evidence of either **focal** or **diffuse neurologic signs** and symptoms (aphasia, ataxia, upper or lower motor neuron patterns o weakness).
- Focal or generalized seizures occur in many patients with encephalitis.

Neurotropic viruses typically cause pathologic injury in distinct regions of the CNS. But cannot be distinguished only by clinical examination.

What are the commonly encountered pathogens?

Despite comprehensive diagnostic efforts, the majority of cases of acute encephalitis of suspected viral etiology remain of unknown cause.

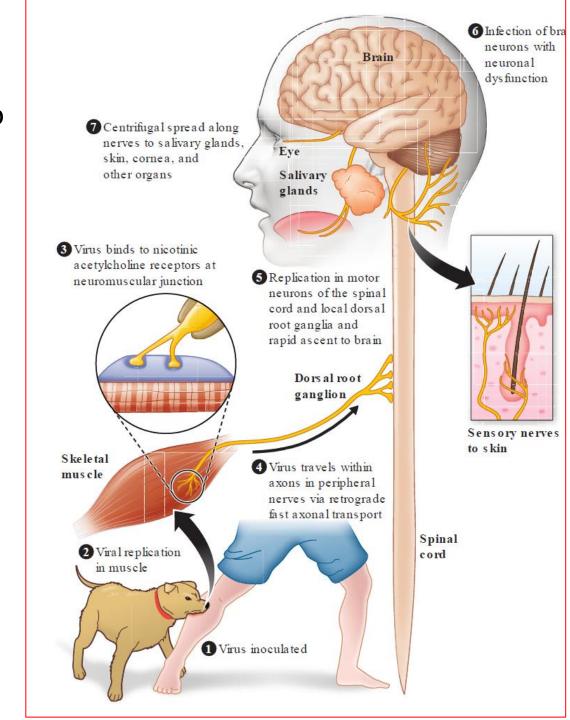
Many viruses can cause encephalitis, but the **most commonly** identified viruses causing sporadic cases of acute encephalitis in immunocompetent adults are **herpesviruses** (HSV, VZV, EBV).

Epidemics of encephalitis are caused by arboviruses (viruses that are transmitted by arthropod vectors). Since 2002 West nile virus (WNV) has been the cause of majority of outbreaks.

West Nile Virus Transmission Cycle

In nature, West Nile virus cycles between mosquitoes (especially Culex species) and birds. Some infected birds, can develop high levels of the virus in their bloodstream and mosquitoes can become infected by biting these infected birds. After about a week, infected mosquitoes can pass the virus to more birds when they bite. Mosquitoes with West Nile virus also bite and infect people, horses and other mammals. However, humans, horses and other mammals are 'dead end'

hosts. This means that they do not develop high levels of virus in their bloodstream, and cannot pass the virus on to other biting mosquitoes.



Rabies virus as a cause of encepahlitis

Rabies is a **zoonotic infection** that occurs in a variety o Mammals, transmitted to humans through **bites**.

- Incubation period ranges from days to less than a year.
- In addition to encephalitis symptoms, in encephalitic (furious) rabies, episodes of hyperexcitability are typically followed by periods of complete lucidity that become shorter as the disease progresses
- Brainstem dysfunction progresses rapidly, and coma— followed within days by death—is the rule unless the course is prolonged by supportive measures.

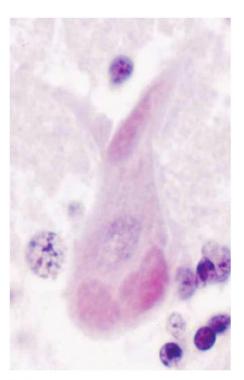

- On the basis of exposure and local epidemiologic information, the physician must decide whether initiation of **post exposure prophylaxis** is warranted
- Prophylaxis involves wound care, and passive immunization with rabies immune globulin.

TABLE 105-1

CLINICAL STAGES OF RABIES		
PHASE	TYPICAL DURATION	SYMPTOMS AND SIGNS
Incubation period	20–90 days	None
Prodrome	2–10 days	Fever, malaise, anorexia, nausea, vomiting; paresthesias, pain, or pruritus at the wound site
Acute neurologic disea Encephalitic (80%) Paralytic (20%)		Anxiety, agitation, hyperactivity, bizarre behavior, hallucinations, autonomic dysfunction, hydrophobia Flaccid paralysis in limb(s) progressing to quadriparesis with facial paralysis
Coma, death ^a	0–14 days	

^aRecovery is rare.

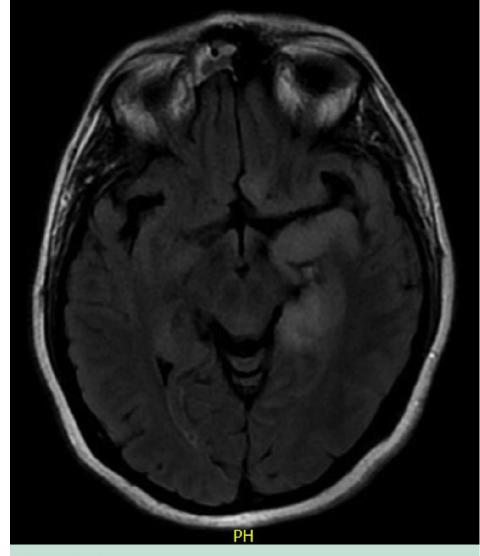
Source: MAW Hattwick: Rabies virus, in Principles and Practice of Infectious Diseases, GL Mandell et al (eds). New York, Wiley, 1979, pp 1217–1228. Adapted with permission from Elsevier.

FIGURE 105-3

Three large Negri bodies in the cytoplasm of a cerebellar Purkinje cell from an 8-year-old boy who died of rabies after being bitten by a rabid dog in Mexico. (From AC Jackson, Elopez-Corella: N Fingl J Med 335:568, 1996. © Massachusetts Medical Society.)

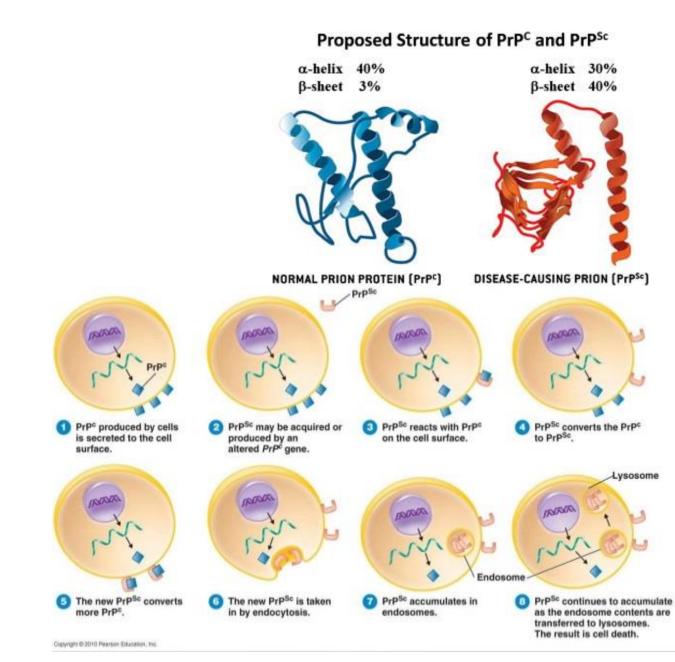
Rabies 3/3

Subscribe



How to diagnose a suspected encephalitis patient?

- Lumber puncture: CSF profile is in indistinguishable from that of viral meningitis and typically consists of a lymphocytic pleocytosis, a mildly elevated protein concentration, and a normal glucose concentration.
- **CSF PCR** has become the primary diagnostic test for viral CNS infections.
- **Serology**: Anti WNV IgM antibodies in the CSF are diagnostic for WNV encephalitis.
- **Neuroimaging**: can help identify or exclude alternative diagnoses and assist in the differentiation between focal, as oppose to a diffuse, encephalitic process.
- Brain biopsy


Figure 1 Herpes simplex virus (HSV) encephalitis. Brain magnetic resonance image of a patient who presented with memory impairment, headaches, and fevers. Axial T2 fluid-attenuated inversion recovery (FLAIR) imaging shows left hemispheric hyperintensity in the anterior and medial temporal lobe and mass effect approaching the midbrain. HSV DNA was detected in the cerebrospinal fluid by polymerase chain reaction.

- In the initial stages of encephalitis, many patients will require care in an **intensive care unit**. Basic management and supportive therapy should include **careful monitoring of vital signs and ICP**.
- Acyclovir is of benefit in the treatment of HSV (and VSV and EBV severe infections) an should be started empirically in patients with suspected viral encephalitis, while awaiting viral diagnostic studies.
- There is considerable variation in the incidence and severity of sequelae in patients surviving viral encephalitis. Many patients with WNV infection have sequelae, including cognitive impairment; weakness; and hyper- or hypokinetic movement disorders, including tremor, myoclonus, and parkinsonism.

Prions

Prions are abnormal, pathogenic agents that are transmissible and are able to induce **abnormal folding** of specific normal cellular proteins called **prion proteins** (**PrP**) that are found most abundantly in the brain.

Prions composed of the prion protein (PrP) are hypothesized as the cause of transmissible spongiform encephalopathies (TSEs).

transmissible spongiform encephalopathies (TSEs).

- Transmissible Spongiform Encephalopathies (TSEs) are a group of diseases that affect the brain and nervous system of humans and animals. The diseases are characterised by a degeneration of cerebral cortex & cerebellum tissue giving it a sponge-like appearance.
- **TSEs** in humans include:
 - 1- Creutzfeldt—Jakob disease (4 forms): the sporadic (sCJD) - the hereditary/familiar (fCJD) - the iatrogenic (iCJD) - the variant form (vCJD).
 - 2- **Kuru**.
 - 3- Fatal familial insomnia (FFI).
- TSEs in animals include:
 - 1- Scrapie in sheep and goats.
 - 2- Bovine spongiform encephalopathy (BSE) in cows. (Madcow disease)

Kuru

Scrapie

Forms of CJD

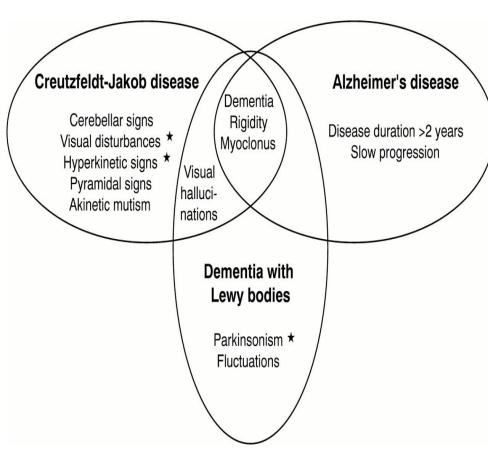
Sporadic (sCJD)

- The infectious prions are believed to be made by an error of the cell machinery that makes proteins and controls their quality.
- These errors are more likely to occur with aging, which explains the general advanced age at onset of CJD and other prion diseases.

Familial (fCJD)

- If the prion protein gene is altered in a person's sperm or egg cells, the mutation can be transmitted to the person's offspring.
- The particular mutation found in each family affects how frequently the disease appears and what symptoms are most noticeable.

acquired (iCJD)/(vCJD)

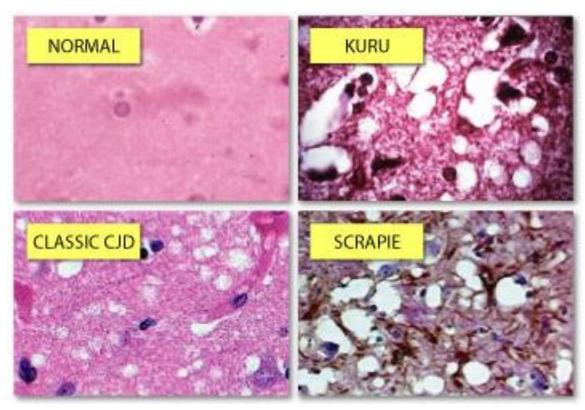

- latrogenic: Accidental transmission o CJD to humans appears to have occurred with corneal transplantation, contaminated (EEG) electrode implantation, and surgical procedures.
- Variant: Acquired by eating meat from cattle affected by BSE,"mad cow" disease.

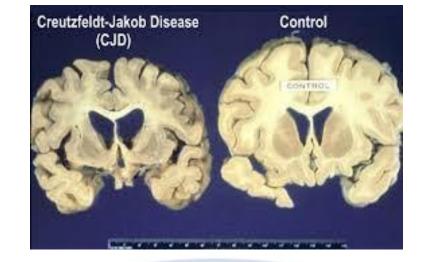
Signs & Symptoms of CJD

• Rapidly progressive dementia (confusion, disorientation, and problems with memory, thinking, planning and judgment).

- Rigidity.
- Agitation, apathy and mood swings.
- Myoclonus.
- As the condition worsens physical manifestations such as:

Ataxia. speech impairment. changes in gait.


- Definition: is a brief, involuntary twitching of a muscle or a group of muscles caused by sudden muscle contractions (positive myoclonus) OR brief lapses of contraction (negative myoclonus).
- Most patients (90%) with CJD exhibit myoclonus that appears at various times throughout the illness.
- Myoclonus persists during sleep,
 Unlike other involuntary movements.


How is CJD diagnosed?

- Electroencephalography (EEG) can be particularly valuable because it shows a specific type of abnormality in major but not all types of CJD.
- Magnetic resonance imaging (MRI) has recently been found to be accurate in about 90 percent of cases.
- The only way to confirm a diagnosis of CJD is by brain biopsy or autopsy. In a brain biopsy, a neurosurgeon removes a small piece of tissue from the person's brain so that it can be examined by a neuropathologist.

- There is no known cure or effective treatment for CJD. However, medications can be used to treat some of the mental changes and personality abnormalities that occur. Treatment is usually focused on making patients comfortable and to help them function safely in their environment (Palliative).
- Opiate drugs can help relieve pain if it occurs, and the drugs clonazepam and sodium valproate may help relieve myoclonus.

Palliative Care

Use a palliative approach for life limiting illness

Optimizing Quality of Life

Maximizing community supports

End-of-Life Care

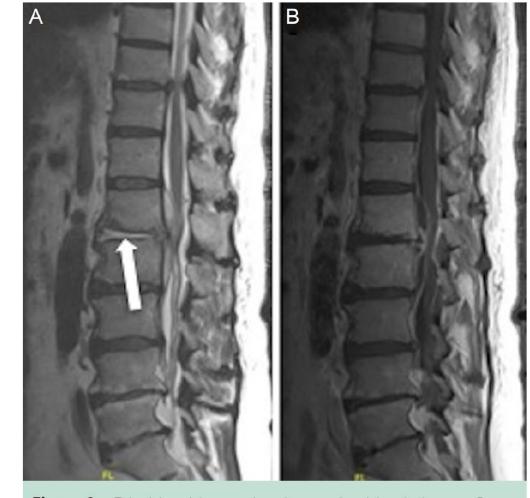
- · Weeks to months
- · Palliative and medical treatments
- Ongoing supports
- Hospice Care
- · Respite and caregiver relief

Last Days/Hours Care

- · Pain & Symptom Mgt
- · Psychosocial & Spiritual supports

Early symptom management

Advanced care planning


The spinal cord can be involved in infections as well (infectious myelopathies)

Myelitis arises from intrinsic infection and inflammation of the spinal cord.

Clinical manifestations depend on the exact level and location within the cord. The herpesviruses and enteroviruses are ubiquitous, accounting for a substantial number of viral myelitis cases.

Pyogenic epidural abscess, a cause of extrinsic cord compression, requires immediate recognition, because permanent neurologic deficits may develop within 36 hours of symptom onset

Treponema pallidum, the causative agent of **syphilis**, is a rare etiology of myelopathy in the 21st century.

Figure 2 Discitis with associated ventral epidural abscess. Lumbosacral magnetic resonance image of a patient with diabetes mellitus who presented with acute on chronic low back pain, fevers, and weight loss. Sagittal T2 fluid-attenuated inversion recovery (FLAIR) imaging (**A**) and T1 postcontrast imaging (**B**) show high T2 signal within the L1-L2 intervertebral disc (arrow) and an associated ventral epidural fluid collection with peripheral enhancement. Blood cultures grew methicillin-sensitive *Staphylococcus aureus*.

Case Scenario for Encephalitis:

Patient Profile: Jane, a 32-year-old female, presents to the emergency department complaining of a severe headache, fever, and confusion.

History of Present Illness: Jane reports that her symptoms started approximately five days ago with a fever, headache, and body aches. Over the past two days, her headache has worsened, and she has become increasingly confused. She reports difficulty remembering things, and she has been experiencing visual hallucinations.

Medical History: Jane has a history of asthma and occasional migraines, but otherwise, she is generally healthy. She takes an over-the-counter migraine medication as needed and has not had any recent hospitalizations or surgeries.

Physical Exam: On examination, Jane appears confused and disoriented. She has a fever of 101.2°F, and her blood pressure is 130/90 mmHg. Her heart rate is elevated at 110 beats per minute. Neurological exam reveals that she has difficulty with orientation, memory, and speech. She also has a stiff neck and is sensitive to light.

Point out the mistakes in this case scenario written by chatgpt

Diagnostic Testing: A lumbar puncture is performed, and cerebrospinal fluid (CSF) analysis reveals elevated white blood cells, indicating inflammation in the brain. The CSF also shows a high protein level and a low glucose level, consistent with a diagnosis of encephalitis. A CT scan of the brain is also ordered to rule out other potential causes of her symptoms, such as a brain abscess or tumor.

Diagnosis and Treatment: Based on the history, physical exam, and diagnostic testing, Jane is diagnosed with encephalitis. She is started on intravenous antiviral medication and supportive care for her fever and pain. She is admitted to the hospital for close monitoring and further treatment.

Outcome: With prompt treatment, Jane's symptoms improve over the course of several days. She remains in the hospital for a week and then is discharged with a prescription for antiviral medication to complete at home. She follows up with her primary care physician and a neurologist for further evaluation and management of her symptoms.

Further reading:

Oxford handbook of infectious diseases and microbiology-

Part4: Clinical syndroms

Chapter 19: Neurological infections

Harrison's Infectious Diseases 3rd Edition
 SECTION III Infections in organ systems
 Chapter 36