Diuretics (Saluretics) Lecture 2

High ceiling, loop, high efficacy diuretics:

Furosemide (Frusemide) O; I.V

Bumetanide O; I.V

Ethacrynic acid (prodrug) O; I.V

Torsemide (active metabolites) O; I.V

The strongest diuretics, have rapid OOA and short DOA

Site of action

Thick segment of ascending loop of Henle

Table 1. Loop Diuretic Comparison to Furosemide

Loop Diuretic	Bioavailability*	Equivalent Dosing*	Dosing Frequency
Bumetanide (Bumex®) IV	100%	1 mg	Daily to Q12H
Bumetanide (Bumex®) Oral	80%-90%	1 mg	Daily to Q12H
Torsemide (Demadex®) IV	100%	20 mg	Daily to Q12H
Torsemide (Demadex®) Oral	80%-100%	20 mg	Daily to Q12H
Furosemide (Lasix®) IV	100%	20 mg	Daily to Q8H
Furosemide (Lasix®) Oral	~50% (varies)	40 mg	Daily to Q8H
Ethacrynic Acid (Edecrin®) IV	100%	50 mg	Daily to Q8H
Ethacrynate Sodium (Edecrin®) Oral	100%	50 mg	Daily to Q8H

^{*}Bioavailability and dose response depends on disease state and prior exposure to diuretics.

Loop diuretics MOA

Inhibition of Na⁺/K⁺/2Cl⁻ transporter leading to 10-25% loss of filtered Na⁺

- ↑ dose → ↑ diuretic effect; over-treatment → dehydration
- Effective even at GFR below 10 ml/min (loop diuretics are most effective in patients with renal insufficiency = creatinine level > 2.5 mg/dl) or resistant cases to other diuretics

- Loop diuretics ↑ excretion of Na⁺, Cl⁻, K⁺, H⁺, H₂O and HCO₃⁻ (weak CA inhibitory effect)
- They are effective orally (OOA 30-60 min; DOA \approx 6 hrs) and parenterally (OOA 5 min; DOA \approx 2 hrs)
- They are albumin bound, eliminated in urine by filtration and tubular secretion and 1/3 rd of oral dose is excreted in bile

- Clinical uses to loop diuretics:
- Acute pulmonary edema
- Edematous states (ascitis; CHF; renal failure...etc)
- Considered 1st line therapy in patients with CHF
- Hypertension
- Hypercalcemia
- Syndrome of Inappropriate ADH secretion

- Side effects to loop diuretics:
- Hypokalemia; hypomagnesemia
- Hypocalcemia
- Irreversible ototoxicity (usually dose related and more common with I.V administration)
- Dehydration; hyperglycemia; hyperuricemia
- Headache; dizziness (due to ↓ in BP)
- Allergic reactions; alkalosis

- Potassium sparing, low efficacy diuretics;
- a. Aldosterone antagonists

Spironolactone; Eplerenone

Aldosterone → ↑ synthesis of Na⁺-K⁺ ATPase → ↑ Na⁺ reabsorption, ↓ reabsorption of K⁺ (↑excretion of K⁺ & H⁺)

Aldosterone antagonists → ↑ Na⁺ excretion & ↓ K⁺ excretion

Site of action of potassium sparing diuretics

Collecting ducts

Only effective in presence of aldosterone (competitive antagonists)

Given orally; have delayed OOA

Weak diuretics, usually combined with other antihypertensives or thiazides

Have great benefit in improving myocardial function in patients with heart failure

Eplerenone is more potent than Spironolactone

- Clinical uses to potassium sparing diuretics:
- Hypertension
- CHF
- Hyperaldosteronism (1° or 2°)
- Hypokalemia
- Hirsutism (antiandrogenic effect)

- Side effects to potassium sparing diuretics:
- Hyperkalemia → cardiac arrhythmias

More common in patients with diabetes, chronic renal disease or patients on ACE inhibitors

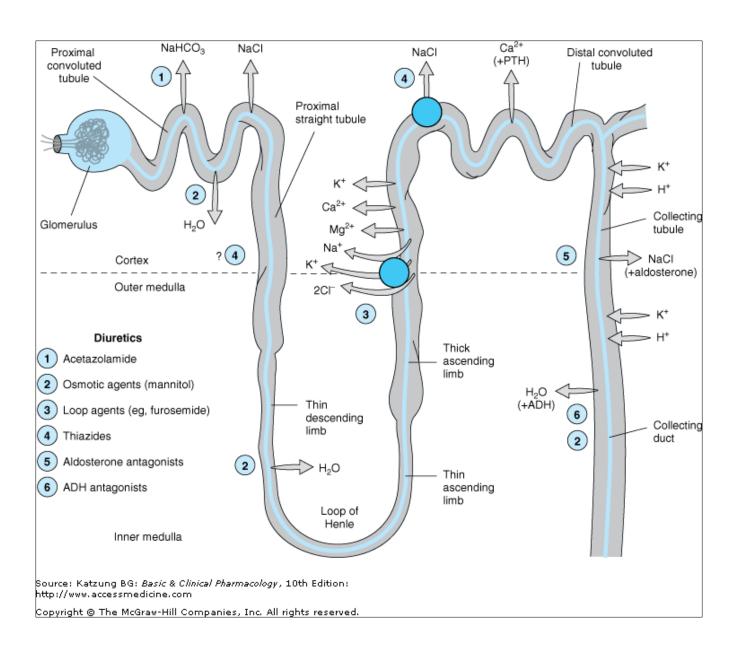
More severe with eplerenone

- Gynecomastia in ♂'s (rare with Eplerenone)
- Breast tenderness in \$\text{9}'s (rare with Eplerenone)

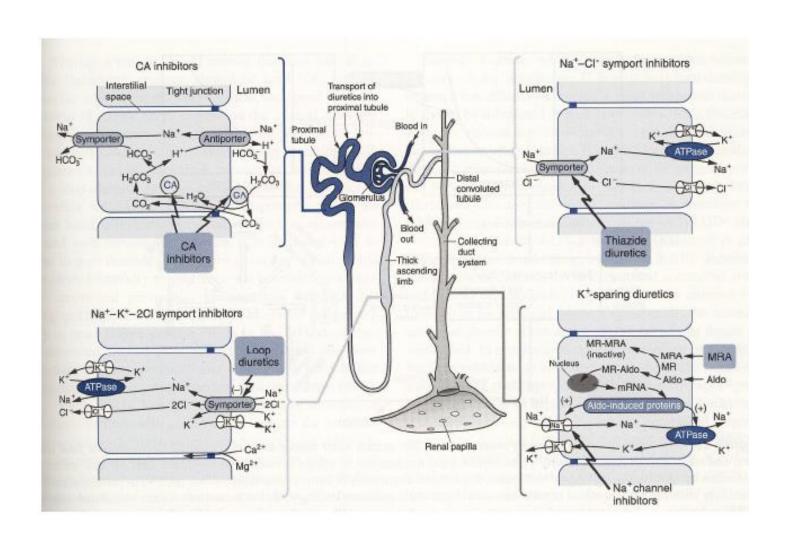
b. None steroidal potassium sparing diuretics:Amiloride; Triamterene

- Site of action: DCT, collecting duct
- MOA
- Blockade of epithelial Na⁺ channels $\rightarrow \downarrow$ Na⁺ reabsorption, \downarrow K⁺ excretion
- Orally effective and available alone or combined with thiazides

- Clinical uses:
- Hypertension
- Hypokalemia
- Side effects:
- Hyperkalemia
- Renal tubular damage especially reported following the use of Triamterene + Hydrochlorothiazide


- The problem of diuretic-induced hypokalemia:
- Thiazide or loop diuretic + oral K⁺ supplement
- Combine thiazide or loop diuretic with a K⁺ sparing diuretic
- ** Unlike thiazide diuretics, loop and K⁺ sparing diuretics have no effects on blood lipids

- Reasons for diuretic resistance or refractoriness (Therapeutic Failure):
- Continued ingestion of salt
- Impairment of organic acid secretion mechanisms in the proximal tubules due to: diseases or drugs
- Secondary hyperaldosteronism


Cont. diuretic therapeutic failure...

- Lowered renal blood flow $\rightarrow \uparrow$ Na⁺ reabsorption (postdiuretic salt retention)
- Lowered bioavailability of the drug
- Management of diuretic resistance

Restriction of sodium intake, changes in dose, changes in timing, and combination of diuretic therapy

Mechanism and site of action of diuretics

