Renal Physiology L2 Guyton & Hall Chapter 28

Ebaa M Alzayadneh, PhD

Objectives

- Understand Glomerular Filtration, Renal Blood Flow and Their Determinants.
- Identify control mechanisms of Glomerular Filtration and Renal Blood.
- Describe the hemodynamic forces that govern filtration function

Differential Renal Handling of Water and Solutes

	Filtration	reabsorption	excretion
L/day Water	180	179	1
Na+ mmol/day	25,560	25,410	150
Glucose gm/day	180	180	0
Creatinine gm/day	1.8	0	1.8

Effects of size and electrical charge of dextran on filterability by glomerular capillaries.

Figure 26-12

V[®] Clinical Application

- What Would happen if Filtration went wrong?
- Edema
- Some kidney diseases result in a damage of the glomerular Capillaries leading to an increase in their permeability to large proteins.
- Hence, Bowman's capsule colloid pressure will increase significantly leading to drawing more water from plasma to the capsule (i.e more filtered fluid).
- Proteins will be lost in the urine causing deficiency in the blood colloid pressure which worsens the situation, blood volume decreases and interstitial fluids increases causing *edema*.

U[®] Microalbuminuria

• Definition: urine excretion of > 30 but < 150 mg albumin per day

• Causes: early diabetes, hypertension, glomerular hyperfiltration

Prognostic Value: diabetic patients with microalbuminuria are 10-20 fold more likely to develop persistent proteinuria

O Clinical Significance of Detection of Proteinuria

- Early detection of renal disease in at-risk patients
 - hypertension: hypertensive renal disease
 - diabetes: diabetic nephropathy
 - pregnancy: gestational proteinuric hypertension (preeclampsia)
 - annual "check-up": renal disease can be silent
- Assessment and monitoring of known renal disease

Glomerular Filtration

GFR = 125 ml/min = 180 liters/day

- Plasma volume is filtered 60 times per day
- Glomerular filtrate composition is about the same as plasma, except for large proteins
- Filtration fraction (GFR / Renal Plasma Flow) = 0.2 (i.e. 20% of plasma is filtered)

Glomerular Filtration

+ colloid capsular pressure (0)

Figure 26-13

Glomerular Filtration Rate (GFR)

- Filtration Fraction (FF)= Fraction of blood plasma in the afferent arterioles that becomes filtrate= 16-20%.
- **GFR** =The volume (ml) of fluid filtered through all the corpuscles of both kidneys per minute.
- The volume of fluid filtered daily through all the corpuscles of both kidneys per day = 180 L
- Hence, GFR= 180 L/24hours * (1000 ml/ L)*(1hour/60 min)= 125 ml/min (Males)
- For 125ml/min; renal plasma flow = 625ml/min
 FF * PF=GFR, PF= 125/(20%)=625 ml/min
- 55% of blood is plasma, so blood flow = 1140ml/min
 55% * BF= PF; BF= 625ml/min/ (55%)=1140 ml/min
- Renal Blood Flow of 1140 ml/min = (22.8 % of 5 liters) is required to have GFR of 125ml/min.

Regulation of Glomerular Filtration

- Homeostasis of body fluids requires constant GFR by kidneys.
- If the GFR is too high, needed substances cannot be reabsorbed quickly enough and are lost in the urine.
- If the GFR is too low -everything is reabsorbed, including wastes that are normally disposed of.

- Please watch this video demonstrating mechanisms of renal regulation
- <u>Regulation of Renal Blood Flow YouTube</u>

Regulation of Renal Blood Flow

Determinants of Glomerular Filtration Rate

Normal Values: GFR = 125 ml/minNet Filt. Press = 10 mmHg $K_f = 12.5 \text{ ml/min per mmHg, or}$ 4.2 ml/min per mmHg/ 100gm (400 x greater than in many tissues)

Glomerular Capillary Filtration Coefficient (K_f)

- K_f = hydraulic conductivity x surface area
 - $K_f = GFR/net filt pressure$
 - Normally <u>not</u> highly variable
 - Disease that can reduce K_f and GFR
 - Damage of capillaries, Basement

Membrane thickens,

- chronic hypertension
- obesity / diabetes mellitus
- glomerulonephritis

Glomerular Injury in Chronic Diabetes

Normal glomerulus

Diabetic nephropathy

Bowman's Capsule hydrostatic Pressure (P_B)

- Normally changes as a function of GFR, not a physiological regulator of GFR
- Increases with Tubular Obstruction kidney stones tubular necrosis
 Reducing GFR
- Urinary tract obstruction Prostate hypertrophy/cancer

Factors Influencing Glomerular Capillary Oncotic Pressure (Π_G)

Arterial Plasma Oncotic Pressure (π_A)

π_A → 1 π_G

Filtration Fraction (FF)

π_G

FF = GFR / Renal plasma flow $= 125 / 650 \sim 0.2 (or 20\%)$

Figure 26-14

Glomerular Hydrostatic Pressure (P_G)

- Is the determinant of GFR most subject to physiological control
- Factors that influence P_G

 arterial pressure (effect is buffered by autoregulation)
 afferent arteriolar resistance
 efferent arteriolar resistance

Autoregulation of renal blood flow and GFR but not urine flow

Effect of afferent and efferent arteriolar constriction on glomerular pressure

Effect of changes in afferent arteriolar or efferent arteriolar resistance

Determinants of Renal Blood Flow (RBF)

$RBF = \Delta P / R$

 ΔP = difference between renal artery pressure and renal vein pressure R = total renal vascular resistance = Ra + Re + Rv= sum of all resistances in kidney vasculature

Renal blood flow

- High blood flow (~22 % of cardiac output)
- High blood flow needed for high GFR
- Oxygen and nutrients delivered to kidneys normally greatly exceeds their metabolic needs
- A large fraction of renal oxygen consumption is related to renal tubular sodium reabsorption

Renal oxygen consumption and sodium reabsorption

