Summary of Antifungal Agents

Fungi Characteristics:

- **Cell Wall**: Rigid, composed of chitin (N-acetylglucosamine)
- **Cell Membrane**: Contains ergosterol (distinct from human cholesterol)
- **Cell Structure**: Eukaryotic with a nucleus and well-defined nuclear membrane

Types of Fungal Infections:

- **Superficial Infections**: Affect skin, nails, scalp, or mucous membranes
- **Systemic Infections**: Affect deeper tissues and organs

Superficial Infections:

- **Dermatomycoses**: Infections of skin, hair, nails caused by dermatophytes (e.g., Tinea/ringworms)
- **Candidiasis**: Infections by Candida in mucous membranes (oral thrush, vaginal thrush, skin)

Systemic Infections:

- Systemic candidiasis, cryptococcal meningitis, pulmonary aspergillosis, blastomycosis, histoplasmosis, coccidioidomycosis, paracoccidioidomycosis

Vulnerable Patients:

- AIDS patients
- Debilitated patients
- Organ transplant recipients on immunosuppressants
- Patients undergoing anticancer therapy

Antifungal Drug Classes and Mechanisms:

- 1. **Polyenes (e.g., Amphotericin B, Nystatin, Natamycin)**
- MOA: Bind to ergosterol in fungal membranes, forming pores, increasing permeability, and causing cell death.
 - Resistance: Decreased ergosterol content, impaired binding.
- 1. **Azoles (e.g., Ketoconazole, Fluconazole, Itraconazole)**
- MOA: Inhibit cytochrome P450 demethylase, disrupting membrane structure and function, inhibiting fungal growth.
 - Resistance: Mutations in demethylase gene.
- 1. **Allylamines (e.g., Terbinafine, Naftifine, Butenafine)**
- MOA: Inhibit fungal squalene epoxidase, decreasing ergosterol synthesis and accumulating toxic squalene, leading to cell death.
- 1. **Echinocandins (e.g., Caspofungin, Micafungin, Anidulafungin)**
 - MOA: Inhibit synthesis of fungal cell wall glucan, leading to cell lysis and death.

- 1. **Griseofulvin**
 - MOA: Inhibits mitotic spindle formation, interfering with microtubule function and mitosis.
- 1. **Antimetabolites (e.g., Flucytosine)**
- MOA: Converted to fluorodeoxyuridine monophosphate, inhibiting thymidylate synthase, disrupting DNA and RNA synthesis.

Key Drugs and Uses:

- **Amphotericin B**:
- Drug of choice for most systemic infections.
- Side Effects: Renal toxicity, hypokalemia, anemia, thrombocytopenia, hepatic impairment, anaphylactic shock.
 - Special Formulations: Liposomal preparations to reduce toxicity.
- **Nystatin**:
- Treats superficial candidiasis (oral, esophageal, intestinal).
- Not absorbed systemically.
- **Natamycin**:
- Used for fungal keratitis.
- Effective against Fusarium, Aspergillus, Candida, Penicillium, Cephalosporium.
- **Flucytosine**:
- Effective against Candida and Cryptococcus.
- Often combined with Amphotericin B.
- Side Effects: Neutropenia, thrombocytopenia, bone marrow depression, hepatic enzyme elevation.

Clinical Use and Side Effects:

- **Polyenes**:
- Effective in systemic and superficial fungal infections.
- Major side effects include renal toxicity and electrolyte imbalances.
- **Azoles**:
- Broad-spectrum antifungals used for systemic and superficial infections.
- Major side effects include liver enzyme elevation and endocrine disturbances.
- **Allylamines**:
- Mainly used for dermatophyte infections.
- Side effects are generally less severe.
- **Echinocandins**:
- Used for invasive aspergillosis and candidiasis.
- Generally well-tolerated.

- **Griseofulvin**:
- Used for dermatophyte infections.
- Side effects include CNS disturbances and hepatotoxicity.
- **Flucytosine**:
- Used in combination for severe infections.
- Hematologic and hepatic side effects are common.

By understanding these key points, students will be well-prepared to handle antifungal treatments in clinical settings.

Ketoconazole

- **Overview**: First orally active narrow-spectrum azole for systemic mycoses.
- **Administration**: Only oral; well-absorbed in acidic environments. Bioavailability reduced by H2 blockers, PPIs, antacids, and food.
- **Pharmacokinetics**: 84% plasma protein-bound; does not enter CSF; metabolized by liver (CYP3A4) and excreted in bile.
- **Interactions**: Induced by Rifampicin (reduces concentration); inhibits CYP450 (potentiates toxicities of drugs like Cyclosporine, Phenytoin, Warfarin).
- **Uses**: Effective against many fungi (e.g., Histoplasma, Blastomyces, Candida, Coccidioides) but not Aspergillus.
- **Forms**: Available in tablets, aerosol, cream, and shampoo. Shampoo and aerosol effective for seborrheic dermatitis.
- **Side Effects**: Nausea, vomiting, liver toxicity, hair loss, endocrine disturbances (menstrual irregularities, gynecomastia, libido loss, impotence), fluid retention, hypertension. Contraindicated in pregnancy.

Triazoles

- **Examples**: Fluconazole, Itraconazole, Voriconazole, Posaconazole.
- **Mechanism**: Inhibit fungal cell membrane demethylase, damaging the membrane.
- **Advantages**: Less toxic, more effective, CNS penetration, less endocrine disturbance, resistant to degradation.

Fluconazole

- **Absorption**: Completely absorbed from GIT; bioavailability not affected by food or gastric acidity.
- **Uses**: Candidiasis, Cryptococcosis (AIDS, coccidial meningitis), prophylactic in bone marrow transplants.
- **Side Effects**: Nausea, vomiting, headache, rash, reversible alopecia, hepatic failure. Teratogenic.

Itraconazole

- **Administration**: Oral and IV; food increases absorption.
- **Pharmacokinetics**: Extensively metabolized in liver (CYP3A4); highly lipid-soluble; bound to plasma protein; does not penetrate CSF well.

- **Side Effects**: Nausea, vomiting, hypertriglyceridemia, hypokalemia, increased liver enzymes, rash.

Voriconazole

- **Potency**: More potent than Itraconazole.
- **Side Effects**: Reversible visual disturbances.

Posaconazole

- **Uses**: Prevents Candida and Aspergillus in immunocompromised patients; treats candidiasis and potentially zygomycosis.
- **Side Effects**: GI symptoms, headache.

Caspofungin

- **Class**: Echinocandin.
- **Mechanism**: Inhibits glucan synthesis in fungal cell walls.
- **Uses**: Aspergillus and Candida.
- **Administration**: IV only.
- **Side Effects**: Nausea, vomiting, flushing, liver dysfunction. Expensive.

Antifungal Drugs for Cutaneous Mycotic Infections

- **Topical Antifungals**: Amphotericin B, Nystatin, Topical Azoles, Tolnaftate, Terbinafine.
 - **Examples**: Miconazole, Clotrimazole, Butoconazole, Terconazole.
- **Side Effects**: Contact dermatitis, vulvar irritation, edema. Miconazole can inhibit Warfarin metabolism, causing bleeding.
- **Oral Antifungals**: Fluconazole, Itraconazole, Ketoconazole.
- **Uses**: Systemic mycosis, mucocutaneous candidiasis, other cutaneous infections.
- **Side Effects**: Hepatitis, liver enzyme elevation, drug interactions.

Griseofulvin

- **Uses**: Dermatophytes (skin, hair, nails); replaced by Terbinafine for nail infections.
- **Administration**: Oral; absorption increased with fatty meal.
- **Side Effects**: Headache, neuritis, mental confusion, fatigue, vertigo.

Terbinafine

- **Uses**: Dermatophytes and onychomycosis (nail infections).
- **Administration**: Oral; highly protein-bound; accumulates in skin, nails, fat.
- **Side Effects**: GIT disturbances, taste/visual disturbance, severe allergic reactions, liver enzyme elevation. Not recommended for nursing mothers, renal/hepatic impairment.