Summary of Antifungal Agents ### #### Fungi Characteristics: - **Cell Wall**: Rigid, composed of chitin (N-acetylglucosamine) - **Cell Membrane**: Contains ergosterol (distinct from human cholesterol) - **Cell Structure**: Eukaryotic with a nucleus and well-defined nuclear membrane # #### Types of Fungal Infections: - **Superficial Infections**: Affect skin, nails, scalp, or mucous membranes - **Systemic Infections**: Affect deeper tissues and organs # #### Superficial Infections: - **Dermatomycoses**: Infections of skin, hair, nails caused by dermatophytes (e.g., Tinea/ringworms) - **Candidiasis**: Infections by Candida in mucous membranes (oral thrush, vaginal thrush, skin) # #### Systemic Infections: - Systemic candidiasis, cryptococcal meningitis, pulmonary aspergillosis, blastomycosis, histoplasmosis, coccidioidomycosis, paracoccidioidomycosis ### #### Vulnerable Patients: - AIDS patients - Debilitated patients - Organ transplant recipients on immunosuppressants - Patients undergoing anticancer therapy # #### Antifungal Drug Classes and Mechanisms: - 1. **Polyenes (e.g., Amphotericin B, Nystatin, Natamycin)** - MOA: Bind to ergosterol in fungal membranes, forming pores, increasing permeability, and causing cell death. - Resistance: Decreased ergosterol content, impaired binding. - 1. **Azoles (e.g., Ketoconazole, Fluconazole, Itraconazole)** - MOA: Inhibit cytochrome P450 demethylase, disrupting membrane structure and function, inhibiting fungal growth. - Resistance: Mutations in demethylase gene. - 1. **Allylamines (e.g., Terbinafine, Naftifine, Butenafine)** - MOA: Inhibit fungal squalene epoxidase, decreasing ergosterol synthesis and accumulating toxic squalene, leading to cell death. - 1. **Echinocandins (e.g., Caspofungin, Micafungin, Anidulafungin)** - MOA: Inhibit synthesis of fungal cell wall glucan, leading to cell lysis and death. - 1. **Griseofulvin** - MOA: Inhibits mitotic spindle formation, interfering with microtubule function and mitosis. - 1. **Antimetabolites (e.g., Flucytosine)** - MOA: Converted to fluorodeoxyuridine monophosphate, inhibiting thymidylate synthase, disrupting DNA and RNA synthesis. ### #### Key Drugs and Uses: - **Amphotericin B**: - Drug of choice for most systemic infections. - Side Effects: Renal toxicity, hypokalemia, anemia, thrombocytopenia, hepatic impairment, anaphylactic shock. - Special Formulations: Liposomal preparations to reduce toxicity. - **Nystatin**: - Treats superficial candidiasis (oral, esophageal, intestinal). - Not absorbed systemically. - **Natamycin**: - Used for fungal keratitis. - Effective against Fusarium, Aspergillus, Candida, Penicillium, Cephalosporium. - **Flucytosine**: - Effective against Candida and Cryptococcus. - Often combined with Amphotericin B. - Side Effects: Neutropenia, thrombocytopenia, bone marrow depression, hepatic enzyme elevation. # #### Clinical Use and Side Effects: - **Polyenes**: - Effective in systemic and superficial fungal infections. - Major side effects include renal toxicity and electrolyte imbalances. - **Azoles**: - Broad-spectrum antifungals used for systemic and superficial infections. - Major side effects include liver enzyme elevation and endocrine disturbances. - **Allylamines**: - Mainly used for dermatophyte infections. - Side effects are generally less severe. - **Echinocandins**: - Used for invasive aspergillosis and candidiasis. - Generally well-tolerated. - **Griseofulvin**: - Used for dermatophyte infections. - Side effects include CNS disturbances and hepatotoxicity. - **Flucytosine**: - Used in combination for severe infections. - Hematologic and hepatic side effects are common. By understanding these key points, students will be well-prepared to handle antifungal treatments in clinical settings. #### #### Ketoconazole - **Overview**: First orally active narrow-spectrum azole for systemic mycoses. - **Administration**: Only oral; well-absorbed in acidic environments. Bioavailability reduced by H2 blockers, PPIs, antacids, and food. - **Pharmacokinetics**: 84% plasma protein-bound; does not enter CSF; metabolized by liver (CYP3A4) and excreted in bile. - **Interactions**: Induced by Rifampicin (reduces concentration); inhibits CYP450 (potentiates toxicities of drugs like Cyclosporine, Phenytoin, Warfarin). - **Uses**: Effective against many fungi (e.g., Histoplasma, Blastomyces, Candida, Coccidioides) but not Aspergillus. - **Forms**: Available in tablets, aerosol, cream, and shampoo. Shampoo and aerosol effective for seborrheic dermatitis. - **Side Effects**: Nausea, vomiting, liver toxicity, hair loss, endocrine disturbances (menstrual irregularities, gynecomastia, libido loss, impotence), fluid retention, hypertension. Contraindicated in pregnancy. #### #### Triazoles - **Examples**: Fluconazole, Itraconazole, Voriconazole, Posaconazole. - **Mechanism**: Inhibit fungal cell membrane demethylase, damaging the membrane. - **Advantages**: Less toxic, more effective, CNS penetration, less endocrine disturbance, resistant to degradation. #### **Fluconazole** - **Absorption**: Completely absorbed from GIT; bioavailability not affected by food or gastric acidity. - **Uses**: Candidiasis, Cryptococcosis (AIDS, coccidial meningitis), prophylactic in bone marrow transplants. - **Side Effects**: Nausea, vomiting, headache, rash, reversible alopecia, hepatic failure. Teratogenic. #### **Itraconazole** - **Administration**: Oral and IV; food increases absorption. - **Pharmacokinetics**: Extensively metabolized in liver (CYP3A4); highly lipid-soluble; bound to plasma protein; does not penetrate CSF well. - **Side Effects**: Nausea, vomiting, hypertriglyceridemia, hypokalemia, increased liver enzymes, rash. ### **Voriconazole** - **Potency**: More potent than Itraconazole. - **Side Effects**: Reversible visual disturbances. ### **Posaconazole** - **Uses**: Prevents Candida and Aspergillus in immunocompromised patients; treats candidiasis and potentially zygomycosis. - **Side Effects**: GI symptoms, headache. # #### Caspofungin - **Class**: Echinocandin. - **Mechanism**: Inhibits glucan synthesis in fungal cell walls. - **Uses**: Aspergillus and Candida. - **Administration**: IV only. - **Side Effects**: Nausea, vomiting, flushing, liver dysfunction. Expensive. # ### Antifungal Drugs for Cutaneous Mycotic Infections - **Topical Antifungals**: Amphotericin B, Nystatin, Topical Azoles, Tolnaftate, Terbinafine. - **Examples**: Miconazole, Clotrimazole, Butoconazole, Terconazole. - **Side Effects**: Contact dermatitis, vulvar irritation, edema. Miconazole can inhibit Warfarin metabolism, causing bleeding. - **Oral Antifungals**: Fluconazole, Itraconazole, Ketoconazole. - **Uses**: Systemic mycosis, mucocutaneous candidiasis, other cutaneous infections. - **Side Effects**: Hepatitis, liver enzyme elevation, drug interactions. ### **Griseofulvin** - **Uses**: Dermatophytes (skin, hair, nails); replaced by Terbinafine for nail infections. - **Administration**: Oral; absorption increased with fatty meal. - **Side Effects**: Headache, neuritis, mental confusion, fatigue, vertigo. #### **Terbinafine** - **Uses**: Dermatophytes and onychomycosis (nail infections). - **Administration**: Oral; highly protein-bound; accumulates in skin, nails, fat. - **Side Effects**: GIT disturbances, taste/visual disturbance, severe allergic reactions, liver enzyme elevation. Not recommended for nursing mothers, renal/hepatic impairment.