Urinary System: Renal Physiology for Medical **Students**

Chapter 28: Urine Concentration and Dilution; Regulation of Extracellular Fluid Osmolarity and Sodium Concentration Part II

Reference: Guyton & Hall, Jordanian first edition

Dr. Ebaa M. Alzayadneh, PhD. Email: e.zayadneh@ju.edu.jo

2024

Factors contributing to urine concentrating capability of the kidney

• High ADH 🥆

High osmolarity of medullary interstitial

- Sodium Chloride build up by counter current multiplier (mainly actively)
 - Urea build up and recirculation (passively)

Recirculation of urea absorbed from medullary collecting duct into interstitial fluid.

Figure 28-5

- Urea is passively reabsorbed in proximal tubule (~ 50% of filtered load is reabsorbed), but secreted by UTA-2 in TDL.
- In the presence of ADH, water is reabsorbed in distal and collecting tubules, concentrating urea in these parts of the nephron
- The inner medullary collecting tubule is highly permeable to urea, which diffuses into the medullary interstitium
- ADH increases urea permeability of medullar collecting tubule by activating urea transporters (UTA-1) and (UTA-3)

The Vasa Recta Preserve Hyperosmolarity of Renal Medulla

• The vasa recta serve as countercurrent exchangers; they don't create medullary hyperosmolarity but they preserve it

Vasa recta blood
flow is low (only 1-2
% of total renal blood
flow)

100

Changes in osmolarity of the tubular fluid

Changes in osmolarity of the tubular fluid

Figure 28-8

- Proximal Tubule: 65 % reabsorption, isosmotic
- Desc. loop: 15 % reasorption, osmolarity increases
- Asc. loop: 0 % reabsorption, osmolarity decreases
- Early distal: 0 % reabsorption, osmolarity decreases
- Late distal and coll. tubules: ADH dependent water reabsorption and tubular osmolarity
- Medullary coll. ducts: ADH dependent water reabsorption and tubular osmolarity

"Free" Water Clearance (C_{H2O}) (rate of solute-free water excretion)

$$CH_2O = V - \frac{Uosm \ x \ V}{Posm}$$

where:

- Uosm = urine osmolarity V = urine flow rate P = plasma osmolarity
- If: Uosm < Posm, $CH_2O = +$ If: Uosm > Posm, CH2O = -

Question

Given the following data, calculate " free water" clearance :

urine flow rate = 6.0 ml/min urine osmolarity = 150 mOsm /L plasma osmolarity = 300 mOsm / L

Is free water clearance in this example positive or negative ?

$$CH_{2}O = V - \frac{Uosm x V}{Posm}$$

= $6.0 - (150 x 6)$
 300
= $6.0 - 3.0$
= $+ 3.0 \text{ ml} / \text{min (positive)}$

• Failure to produce ADH : "Central" diabetes insipidus

- Failure to respond to ADH: "nephrogenic" diabetes insipidus
 - impaired loop NaCl reabs. (loop diuretics)
 - drug induced renal damage: lithium, analgesics
 - malnutrition (decreased urea concentration)
 - kidney disease: pyelonephritis, hydronephrosis, chronic renal failure

Total Renal Excretion and Excretion Per Nephron in Renal Failure

	Normal	75 % loss of nephrons
Number of nephrons 2.	000.000	500.000
Total GFR (ml/min	125	40
GFR per nephron (nl/min)	62.5	80
Total Urine flow rate (ml/min) 1.5	1.5
Volume excreted	0.75	3.0
per nephron (nl/min)		

Osmoreceptor– antidiuretic hormone (ADH) feedback mechanism for regulating extracellular fluid osmolarity.

Figure 28-9

Stimuli for ADH Secretion

- Increased osmolarity
- Decreased blood volume (cardiopulmonary reflexes)
- Decreased blood pressure (arterial baroreceptors)
- Other stimuli :
 - input from cerebral cortex (e.g. fear)
 - angiotensin II
 - nausea
 - nicotine
 - morphine

The effect of increased plasma osmolarity or decreased blood volume.

Factors That Decrease ADH Secretion

- Decreased osmolarity
- Increased blood volume (cardiopulmonary reflexes)
- Increased blood pressure (arterial baroreceptors)
- Other factors :
 - alcohol
 - clonidine (antihypertensive drug)
 - haloperidol (antipsychotic, Tourette's)

Stimuli for Thirst

- Increased osmolarity
- Decreased blood volume (cardiopulmonary reflexes)
- Decreased blood pressure (arterial baroreceptors)
- Increased angiotensin II
- Other stimuli:
 - dryness of mouth

Factors That Decrease Thirst

- Decreased osmolarity
- Increased blood volume (cardiopulmonary reflexes)
- Increased blood pressure (arterial baroreceptors)
- Decreased angiotensin II
- Other stimuli:
 - -Gastric distention

Maximal Urine flow rate; water excretion rate

- Max water exc rate in adults=20-23 L/day, does not exceed 800-1,000 ml/hr
- Then water intake should not exceed 800-1,000 ml / hr to avoid hyponatremia and water intoxication
- <u>Water intoxication: What happens when you drink</u> too much water? (medicalnewstoday.com)

