Urinary System: Renal Physiology for Medical Students, L4-8

Urine Formation by the Kidneys: II. Tubular Reabsorption and Secretion

Reference: Guyton & Hall, Jordanian first edition Chapter27

> Dr. Ebaa M. Alzayadneh, PhD. Email: e.zayadneh@ju.edu.jo

2023

Objectives

- Describe the mechanisms of renal reabsorption and secretion in the nephron for different substances.
- Identify the functions of the different parts of the nephron tubules and describe the transport mechanisms occurring in each part.
- Describe the changes in concentrations of different substances in the renal tubules and the underlying causes of these changes.
- Understand how inulin can be used to estimate water reabsorption in each segment of the nephron.

The functional unit of the kidney

- **Basic Mechanisms** of Urine Formation
- Ultrafiltration
- Reabsorption
- Secretion
- Excretion

Excretion=

Secretion

Audio-Visual Aid

Please watch this animation Demonstarting:

<u>Reabsorption and Secretion animation - YouTube</u>

Reabsorption and Secretion animation

Reabsorption of Water and Solutes

Reabsorption of Water and Solutes

Key:

Diffusion

Active transport

Sodium-potassium pump (Na*/K*ATPase)

Active Transport

Proximal tubule reabsorption

© Elsevier. Levy et al: Berne and Levy Principles of Physiology 4e - www.studentconsult.com

Glucose: Proximal Tubules

Mechanisms of secondary active transport in Proximal Convoluted Tubules.

Figure 27-3

Glucose Transport Maximum

Figure 27-4

Proximal Convoluted Cells

Mechanisms of water, chloride, and urea reabsorption coupled with sodium reabsorption

Proximal Tubules

- The proximal tubules reabsorbs about 67% of filtered water, Na⁺, Cl⁻, K⁺, HCO₃⁻.
- The proximal tubules reabsorbs almost all glucose and amino acids filtered by the glomeruli.
- The key transporter element is the Na, K- ATP ase in the basolateral membrane.

: Guyton & Hall: Textbook of Medical Physiology 11e - www.studentconsult.

Changes in concentration in proximal tubule

Loop of Henle

- Water reabsorption occurs exclusively in the thin descending limb of Henle via AQP1 water channels.(Aquaporins)
- Reabsorption of NaCl occurs in both thin and thick ascending limb of Henle.
- In thin ascending limb NaCl is reabsorbed passively. However, in thick ascending limb NaCl is reabsorbed through Na⁺-K⁺ ATPase in basolateral membrane ans.
- Ascending limb is impermeable to water.
- Reabsorption of Ca⁺⁺ and HCO3⁻ occurs also in Loop of Henle.

Thick ascending limb of Henle

© Elsevier. Levy et al: Berne and Levy Principles of Physiology 4e - www.studentconsult.com

Sodium chloride and potassium transport in thick ascending loop of Henle

Early Distal Tubule

Early Distal Tubule

- Functionally similar to thick ascending loop
- Not permeable to water (called diluting segment)
- Active reabsorption of Na⁺, Cl⁻, K⁺, Mg⁺⁺
- Contains macula densa

Distal tubule and collecting duct

Reabsorbs 7% NaCl, secrets K+ and H+ and reabsorbs

8-17% H₂O

Early and Late Distal Tubules and Collecting Tubules.

 ~ 5% of filtered load NaCl reabsorbed

 <u>not</u> permeable to H₂O
 not very permeable to urea

- permeablility to H₂O depends on ADH
- not very permeable to urea

Late Distal and Cortical Collecting Tubules Principal Cells – Secrete K⁺

Figure 27-12

Late Distal and Cortical Collecting Tubules <u>Intercalated Cells</u> –Secrete H⁺

Transport characteristics of medullary collecting ducts

Normal Renal Tubular Na⁺ Reabsorption

Concentrations of solutes in different parts of the tubule depend on relative reabsorption of the solutes compared to water

• If water is reabsorbed to a greater extent than the solute, the solute will become more concentrated in the tubule (e.g. creatinine, inulin)

• If water is reabsorbed to a lesser extent than the solute, the solute will become less concentrated in the tubule (e.g. glucose, amino acids)

Changes in concentrations of substances in the renal tubules

Concentrations of solutes in different parts of the tubule depend on relative reabsorption of the solutes compared to water

The figure below shows the concentrations of inulin at different points along the tubule, expressed as the tubular fluid/plasma (TF/P_{inulin}) concentration of inulin. If inulin is not reabsorbed by the tubule, what is the percentage of the filtered water that has been reabsorbed or remains at each point ? What percentage of the filtered water has been reabsorbed up to that point?

- $B = \frac{1/8 \ (12.5 \ \%) \ \text{remains}}{87.5 \ \% \ \text{reabsorbed}}$
- $C = \frac{1/50 (2.0 \%) \text{ remains}}{98.0 \% \text{ reabsorbed}}$

Regulation of Tubular Reabsorption

- Glomerulotubular Balance
- Peritubular Physical Forces
- Hormones
 - aldosterone
 - angiotensin II
 - antidiuretic hormone (ADH)
 - natriuretic hormones (ANF)
 - parathyroid hormone
- Sympathetic Nervous System
- Arterial Pressure (pressure natriuresis)
- Osmotic factors

Glomerulotubular Balance

Tubular Load

Importance of Glomerulotubular Balance in Minimizing Changes in Urine Volume

GFR	Reabsorption	% Reabsorption	Urine Volume
	no glomerulotubula	ar balance	
125	124	99.2	1.0
150	124	82.7	26.0
	"perfect" glomerulotubu	lar balance	
150	148.8	99.2	1.2

Peritubular capillary reabsorption

Calculation of Tubular Reabsorption

(when Excret s < Filt s) Reabsorption = Filtration -Excretion Filt $s = GFR \times Ps$ (Ps = Plasma conc of s)Excret $s = Us \times V$ Us = Urine conc of sV = urine flow rate

Calculation of Tubular Secretion

(when Excret s > Filt s) Secretion = Excretion - Filtration

Filt $s = GFR \times Ps$

GFR = 100 ml/min (0.1 L/min) $P_{Na} = 140 \text{ mEq/L}$ urine flow = 1 ml/min (.001 L/min) urine Na conc = 100 mEq/L

Filtration Na = GFR x P_{Na} = 0.1 L/min x 140 mEq/L = 14 mEq/min Excretion Na = Urine flow rate x Urine Na conc =.001 L/min x 100 mEq/L = 0.1 mEq/min

Example: Given the following data, calculate the rate of Na⁺ filtration, excretion, reabsorption, and secretion

GFR =100 ml/min; $P_{Na} = 140 \text{ mEq/L}$ urine flow = 1 ml/min; urine Na conc = 100 mEq/L

<u>Filtration Na</u> = 0.1 L/min x 140 mEq/L = <u>14 mEq/min</u> <u>Excretion Na</u> = .001 L/min x 100 mEq/L = <u>0.1 mEq/min</u> Reabsorption Na = Filtration Na - Excretion Na Reabs Na = 14.0 - 0.1 = 13.9 mEq/min Secretion Na = There is no net secretion of Na since Excret Na < Filt Na

Transport Maximum

Some substances have a maximum rate of tubular transport due to saturation of carriers, limited ATP, etc

- Transport Maximum: Once the transport maximum is reached for all nephrons, further increases in tubular load are not reabsorbed and are excreted.
- Threshold is the tubular load at which transport maximum is exceeded in some nephrons. This is not exactly the same as the transport maximum of the whole kidney because some nephrons have lower transport max's than others.
- Examples: glucose, amino acids, phosphate, sulphate

Does Na+ have Transport Maximum?

A uninephrectomized patient with uncontrolled diabetes has a GFR of 90 ml/min, a plasma glucose of 200 mg% (2mg/ml), and a transport max (Tm) shown in the figure. What is the glucose excretion for this patient?

1.0 mg/min2. 30 mg/min 3. 60 mg/min 4.90 mg/min 5. 120 mg/min

Copyright © 2011 by Saunders, an imprint of Elsevier Inc.

Peritubular Capillary Reabsorption

Reabs = Net Reabs Pressure (NRP) x K_f

= $(10 \text{ mmHg}) \times (12.4 \text{ ml/min/mmHg})$

Reabs = 124 ml/min

Determinants of Renal Reabsorption

Determinants of Renal Reabsorption

Determinants of Renal Reabsorption

Effect of increased hydrostatic pressure or decreased colloid osmotic pressure in peritubular capillaries to reduce reabsorption

Aldosterone actions on late distal, cortical and medullary collecting tubules

- Increases Na⁺ reabsorption principal cells
- Increases K⁺ secretion principal cells
- Increases H⁺ secretion intercalated cells

Late Distal, Cortical and Medullary Collecting Tubules

V Clinical Perspective Abnormal Aldosterone Production

- Excess aldosterone (Primary aldosteronism Conn's syndrome) - Na⁺ retention, hypokalemia, alkalosis, hypertension
- Aldosterone deficiency Addison's disease Na⁺ wasting, hyperkalemia, hypotension

Control of Aldosterone Secretion

Factors that increase aldosterone secretion

- Angiotensin II
- Increased K⁺
- adrenocorticotrophic hormone (ACTH) (permissive role)

Factors that decrease aldosterone secretion

- Atrial natriuretic factor (ANF)
- Increased Na⁺ concentration (osmolality)

Angiotensin II Increases Na⁺ and Water Reabsorption

- Stimulates aldosterone secretion
- Directly increases Na⁺ reabsorption (proximal, loop, distal, collecting tubules)
- Constricts efferent arterioles
 - decreases peritubular capillary
 - hydrostatic pressure
 - increases filtration fraction, which increases peritubular colloid osmotic pressure)

Jdio-Visual Aid <u>Renin Angiotensin Aldosterone System - YouTube</u>

Angiotensin II increases renal tubular sodium reabsorption

Effect of Angiotensin II on Peritubular Capillary Dynamics

Ang II constriction of efferent arterioles causes Na⁺ and water retention and maintains excretion of waste products

Angiotensin II blockade decreases Na⁺ reabsorption and blood pressure

- ACE inhibitors (captopril, benazipril, ramipril)
- Ang II antagonists (losartan, candesartin, irbesartan)
- Renin inhibitors (aliskirin)
 - decrease aldosterone
 - directly inhibit Na⁺ reabsorption
 - decrease efferent arteriolar resistance

Natriuresis and Diuresis + Blood Pressure

Antidiuretic Hormone (ADH)

- Secreted by posterior pituitary
- Increases H₂O permeability and reabsorption in distal and collecting tubules
- Allows differential control of H_2O and solute excretion
- Important controller of extracellular fluid osmolarity

ADH synthesis in the magnocellular neurons of hypothalamus, release by the posterior pituitary, and action on the kidneys

Mechanism of action of ADH in distal and collecting tubules

Feedback Control of Extracellular Fluid Osmolarity by ADH

V[®] Clinical Perspective Abnormalities of ADH

Inappropriate ADH syndrome (excess ADH)
 decreased plasma osmolarity, hyponatremia

 "Central" Diabetes insipidus (insufficient ADH)

 increased plasma osmolarity, hypernatremia, excess thirst

Atrial natriuretic peptide increases Na⁺ excretion

- Secreted by cardiac atria in response to stretch (increased blood volume)
- Directly inhibits Na⁺ reabsorption
- Inhibits renin release and aldosterone formation
- Increases GFR
- Helps to minimize blood volume expansion

Atrial Natriuretic Peptide (ANP)

Parathyroid hormone increases renal Ca⁺⁺ reabsorption

- Released by parathyroids in response to decreased extracellular Ca⁺⁺
- Increases Ca⁺⁺ reabsorption by kidneys
- Increases Ca⁺⁺ reabsorption by gut
- Decreases phosphate reabsorption
- Helps to increase extracellular Ca⁺⁺

Control of Ca⁺⁺ by Parathyroid Hormone

Sympathetic nervous system increases Na⁺ reabsorption

- Directly stimulates Na⁺ reabsorption
- Stimulates renin release
- Decreases GFR and renal blood flow (only a high levels of sympathetic stimulation)

Answer Increased Arterial Pressure Decreases Na⁺ Reabsorption (Pressure Natriuresis)

- Increased peritubular capillary hydrostatic pressure
- Decreased renin and aldosterone
- Increased release of intrarenal natriuretic factors
 prostaglandins
 - EDRF

Osmotic Effects on Reabsorption

- Water is reabsorbed only by osmosis
- Increasing the amount of unreabsorbed solutes in the tubules decreases water reabsorption
- i.e. diabetes mellitus : unreabsorbed glucose in tubules causes diuresis and water loss
- i.e. osmotic diuretics (mannitol)

Assessing Kidney Function

- Plasma concentration of waste products (e.g. BUN, creatinine)
- Urine specific gravity, urine concentrating ability;
- Urinalysis test reagent strips (protein, glucose, etc)
- Biopsy
- Albumin excretion (microalbuminuria)
- Isotope renal scans
- Imaging methods (e.g. MRI, PET, arteriograms, iv pyelography, ultrasound etc)
- Clearance methods (e.g. 24-hr creatinine clearance)

• etc

Link To Recording of Clearance and GFR Calculation

<u>https://fisjo-</u> <u>my.sharepoint.com/:v:/g/personal/e_zayadneh_ju_edu_jo/EVf</u> <u>xrMv5fDZHgWF5wU3y3x0BW4Y-</u> <u>3tEaRCkc6iRxRnZ7rQ?e=LosKcU</u>
Clearance

• "Clearance" describes the rate at which substances are removed (cleared) from the plasma.

• Renal clearance of a substance is the volume of plasma <u>completely</u> cleared of a substance per min by the kidneys.

Clearance Technique

Renal clearance (Cs) of a substance is the volume of plasma <u>completely</u> cleared of a substance per min.

	Cs x Ps = Us	x V
Cs	= <u>Us x V</u> $=$ 1	urine excretion rate
	Ps	Plasma conc. s

Where : Cs = clearance of substance S Ps = plasma conc. of substance S Us = urine conc. of substance SV = urine flow rate

Clearances of Different Substances

Substance	Clearance (ml/min)		
glucose	0		
albumin	0		
sodium	0.9		
urea	70		
inulin	125		
creatinine	140		
PAH	600		

Use of Clearance to Measure GFR

For a substance that is freely filtered, but not reabsorbed or secreted (inulin, ¹²⁵ I-iothalamate, creatinine), renal clearance is equal to GFR

 $P_{inulin} = 1.0 \text{ mg} / 100 \text{ml}$ $U_{inulin} = 125 \text{ mg} / 100 \text{ ml}$ Urine flow rate = 1.0 ml/min $U_{inulin} = 0.0 \text{ ml} + 0.0 \text{ml}$

$$GFR = C_{\text{inulin}} = \frac{O_{\text{in}} \times \mathbf{v}}{P_{\text{in}}}$$

$$GFR = \frac{125 \times 1.0}{1.0} = 125 \text{ ml/min}$$

Theoretically, if a substance is completely cleared from the plasma, its clearance rate would equal renal plasma flow

Paraminohippuric acid (PAH) is freely filtered and secreted and is almost completely cleared from the renal plasma

ERPF=estimated renal plasma flow

To calculate <u>actual</u> RPF , one must correct for incomplete extraction of PAH $A_{PAH} = 1.0$

Calculation of Tubular Reabsorption

Reabsorption = Filtration - Excretion

Excret $s = Us \times V$

Question

The maximum possible clearance rate of a substance that is completely cleared from the plasma by the kidneys would be equal to

- 1. glomerular filtration rate
- 2. the filtered load of the substance
- 3. urine excretion rate of the substance

4. renal plasma flow

5. none of the above

Use of Clearance to Estimate Renal Plasma Flow

Theoretically, if a substance is completely cleared from the plasma, its clearance rate would equal renal plasma flow

Clearances of Different Substances

Substance	Clearance (ml/min
inulin	125
PAH	600
glucose	0
sodium	0.9
urea	70

Clearance of inulin $(C_{in}) = GFR$ if Cx < Cin: indicates reabsorption of x if Cx > Cin: indicates secretion of x Clearance creatinine $(C_{creat}) \sim 140$ (used to estimate GFR) Clearance of PAH $(C_{pah}) \sim$ effective renal plasma flow

Reduction of GFR by 50 % will increase serum creatinine to double while, creatinine excretion rate will remain the same as normal in steady state conditions

\checkmark

Plasma creatinine can be used to estimate changes in GFR

Clinical Perspective Clinical GFR estimation equations using GFR

Model

Online calculator:	Creatinine model Weight model	36.76+1.91 × Wt-0.47 × SCr 16.25+1.67 × Wt	
eGFR Calculator National Kidney Foundation	Cockcroft function ^a	$\frac{(130 + 0.09 \times \text{Age}) \times \text{Wt} \times (1 + 0.11 \times \text{Sex})}{\text{SCr}}$	
	Jelliffe function ^a	$\frac{(2530 + 126 \times Age) \times BSA \times (1 + 0.13 \times Sex)}{SCr}$	
	Léger model	$\frac{(56.7 \times Wt + 0.142 \times Hght^2)}{SCr}$	
	Schwartz regression	$\frac{0.55 \times \text{Hght}}{\text{SCr} \times 0.01131} \times (\text{BSA}/1.73) \text{ if female}$	
		$\left(1.5 \times \text{Age} + \frac{0.5 \times \text{Hgm}}{\text{SCr} \times 0.01131}\right) \times (\text{BSA}/1.73)$ if male	

Coefficients derived from modelling data set, except for Schwarz and Léger equations where the original coefficients are used. Wt: weight (kg); Age: age (years); Sex: I if male, 0 if female; SCr: serum creatinine (μ mol I⁻¹); BSA: body surface area (m²); Hght: height (cm). ^aCoefficients re-estimated from current data set using nonlinear mixed effects modelling.

Equation

Uo Clinical Perspective

Chronic kidney disease evaluation by GFR

Stage	Description	GFR (mL/min)
1	Kidney damage (protein in the urine) with normal or elevated GFR	90 or more
2	Kidney damage with mildly decreased GFR	60-89
3	Kidney damage with moderately decreased GFR	30-59
4	Kidney damage with severely decreased GFR	15-29
5	Kidney failure: end-stage renal disease (ESRD). Patients who have Stage 5 dis- ease require dialysis or transplantation to survive.	Less than 15