7.5 Comparison of bulbar and pseudobulbar palsy

	Bulbar palsy	Pseudobulbar palsy
Level of motor Lesion	Lower motor neuron	Upper motor neuron
Speech	Dysarthria	Dysarthria and dysphonia
Swallowing	Dysphagia	Dysphagia
Tongue	Weak, wasted and fasciculating	Spastic, slow-moving
Jaw jerk	Absent	Present/brisk
Emotional lability	Absent	May be present
Causes	Motor neuron disease	Cerebrovascular disease, motor neuron disease, multiple sclerosis

11.20 Definitions of paralysis

Term	Definition	
Paresis	Partial paralysis	
Plegia	Complete paralysis	
Monoplegia	Involvement of a single limb	
Hemiplegia	Involvement of one-half of the body	
Paraplegia/diplegia	Paralysis of the legs	
Tetraplegia	Paralysis of all four limbs	

Deep tendon reflexes

11.24 Monosynaptic (deep tendon) reflexes and root innervation		
Reflex (muscle)	Nerve root	
Biceps	C5	
Supinator (brachioradialis)	C6	
Triceps	C7	
Knee (quadriceps)	L3, 4	
Ankle (gastrocnemius, soleus)	S1	

11.12 Features of motor neurone lesions

neurone lesion lesion			
Inspection Usually normal Wasting, fasciculation			Lower motor neurone lesion
(wasting in Iongstanding Iesions)	nspection	longstanding	Wasting, fasciculation
Tone Increased with Normal or decreased, clonus no clonus	one	_	Normal or decreased, no clonus
affects extensors in distribution of nerve	Veakness	affects extensors in	Usually more focal, in distribution of nerve root or peripheral nerve
Deep tendon Increased Decreased/absent reflexes	•	Increased	Decreased/absent
Plantar Extensor Flexor response		Extensor	Flexor

4- Focal neurological symptoms due to stroke or transient ischaemic attack

Stroke is a focal neurological deficit of rapid onset that is due to a vascular cause.

• A transient ischaemic attack (TIA) is the same, but symptoms resolve within 1 hour.

• TIAs are an important risk factor for impending stroke and demand urgent assessment and treatment.

The oculomotor nerve (III)

- motor and parasympathetic function
- Innervates the superior, medial, and inferior recti, the inferior oblique and levator palpebrae superioris muscles
- Its course is related to posterior communicating artery and cavernous sinus

Function:

- 1. It Moves the globe upwards, downwards, and medially
- 2. It elevate the upper lid
 - 3. Pupillary reflex (constrict pupil)

III CN palsy

- Unilateral ptosis (often complete)
- 2. Large pupil (Mydriasis)
- 3. The eye is looking **inferolaterally**

The Trochlear nerve (IV)

Supplies the superior oblique muscle

 Function: downward movement of the globe when the eye is adducted (inferio-medially)

• IV CN palsy -> affected eye is directed superio-laterally.

The abducens nerve (VI)

- Supplies the lateral rectus muscle
- Abducts the eye (lateral gaze)
- Has along course around the brainstem before it pierces the dura to enter the cavernous sinus.
- In direct relation to the internal carotid artery before it passes through the superior orbital fissure to the lateral rectus muscle.

The optic nerve (CN II)

- Purely sensory
- Similar to white matter rather than peripheral nerve, is unable to regenerate

Function:

- responsible for transmitting visual sensory information from the retina to the brain
- 2. The afferent part of the pupillary reflex

The visual pathway lesions:

• **Before the Optic chiasm -** The visual field loss is seen on the same (ipsilateral) side as the lesion

 After the optic chiasm - The visual loss is seen on the opposite (contralateral) side of the lesion because the optic nerves have already crossed over at the optic chiasm

The pupillary reflex (2-3): Pupillary constriction

▶ The afferent limb involves the optic nerve, chiasm and the optic tract, bypassing the lateral geniculate nucleus, synapsing in the pretectal nucleus (superior colliculus) then terminates in the Edinger–Westphal nucleus.

▶ The efferent limb involves the oculomotor nerve (CN III), passing through the ciliary ganglion in the orbit to the constrictor muscle of the iris via ciliary nerves.

