CARDIOGENIC SHOCK

Hanna Al-Mamkhamreh, MD FACC Director of Cardiology Department

HYPOTENSION REFRACTORY TO VOLUME RESUSCITATION WITH FEATURES OF END-ORGAN HYPOPERFUSION REQUIRING PHARMACOLOGICAL OR MECHANICAL INTERVENTION. ACUTE MYOCARDIAL INFARCTION (MI) ACCOUNTS FOR 81% OF PATIENT IN CS CARDIOGENIC SHOCK (CS) IS A COMMON CAUSE OF MORTALITY, AND MANAGEMENT REMAINS CHALLENGING DESPITE ADVANCES IN THERAPEUTIC OPTIONS.

Definition

CS IS CAUSED BY SEVERE IMPAIRMENT OF MYOCARDIAL PERFORMANCE THAT RESULTS IN DIMINISHED CARDIAC OUTPUT, END-ORGAN HYPOPERFUSION, AND HYPOXIA.

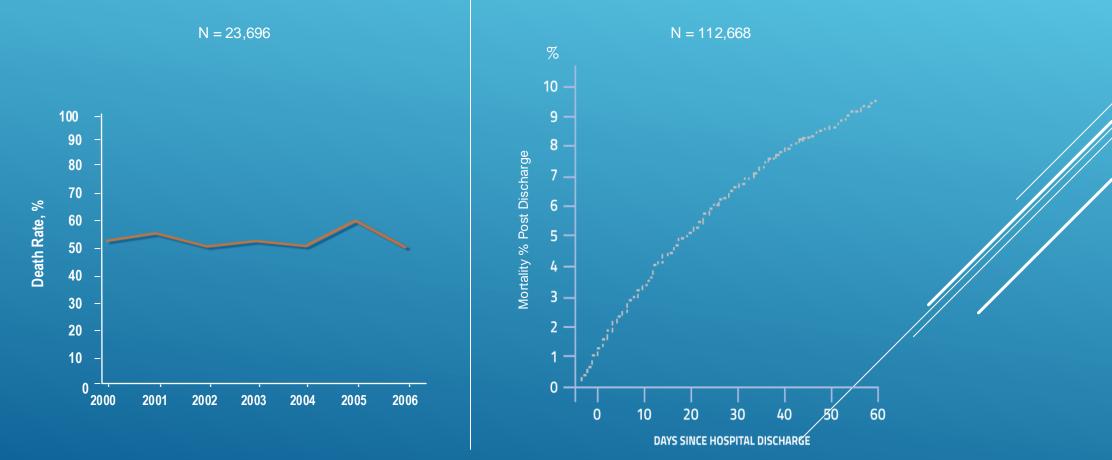
Cardiogenic shock

 CS COMPLICATES 5% TO 10% OF CASES OF ACUTE MI AND IS THE LEADING CAUSE OF DEATH AFTER MI.

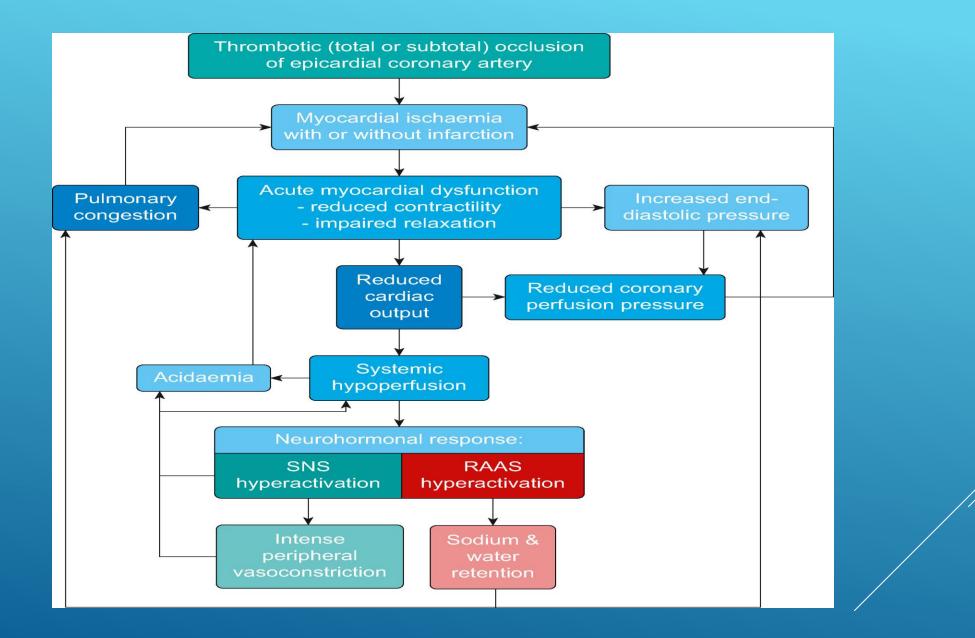
ST-SEGMENT-ELEVATION MYOCARDIAL INFARCTION (STEMI) IS ASSOCIATED WITH A 2-FOLD INCREASED RISK FOR DEVELOPMENT OF CS COMPARED WITH NON-ST-SEGMENT-ELEVATION MYOCARDIAL INFARCTION (NSTEMI).

PATIENTS WITH NSTEMI-ASSOCIATED CS ARE LESS LIKELY TO UNDERGO EARLY CARDIAC CATHETERIZATION, DELAYING PCI AND/OR CORONARY ARTERY BYPASS GRAFT AND INCREASING THE RISK OF MORTALITY COMPARED WITH PATIENTS WITH STEMI-ASSOCIATED

Cardiogenic shock


HIGHER INCIDENCES OF CS ARE OBSERVED IN WOMEN, ASIAN/PACIFIC, AND PATIENTS AGED >75 YEARS.

THE INCIDENCE OF CS HAS INCREASED IN RECENT YEARS, DUE TO IMPROVED DIAGNOSIS AND BETTER ACCESS TO CARE .WHILE THE IN-HOSPITAL MORTALITY HAS IMPROVED, THE 6- TO 12-MONTH MORTALITY IN CARDIOGENIC SHOCK HAS REMAINED UNCHANGED AT ≈50% OVER THE PAST 2 DECADES.


Cardiogenic shock

CARDIOGENIC SHOCK REMAINS LEADING CAUSE OF MORTALITY IN AMI

High In-Hospital Mortality During AMI Cardiogenic Shock¹ ... and Ongoing Hazard Post Discharge after AMI Cardiogenic Shock²

Jeger, et al. Ann Intern Med. 2008
 Shah, et al. JACC 2016 NCDR Registry

Shock Clinical Criteria*

SBP <	SBP <90 mm Hg for >30 min:				
a.	Or mean BP <60 mm Hg for >30 min				
b.	Or requirement of vasopressors to maintain systolic				
	BP ≥90 mm Hg or mean BP ≥60 mm Hg				
Нуро	perfusion defined by:				
c.	Decreased mentation				
d.	Cold extremities, livedo reticularis				
e.	Urine output <30 mL/h				
f.	Lactate >2 mmol/L				

Suggested Shock Hemodynamic Criteria*

SBP <90 mm Hg or mean BP <60 mm Hg
 Cardiac index <2.2 L/min/m²
 Pulmonary capillary wedge pressure >15 mm Hg
 Other hemodynamic considerations

 a. Cardiac power output ([CO x MAP]/451) <0.6 W
 b. Shock index (HR/systolic BP) >1.0

c. RV shock

i. Pulmonary artery pulse index [(PASP-

PADP)/CVP] <1.0

i. CVP>15 mm Hg

i. CVP-PCW >0.6

BP indicates blood pressure; CO, cardiac output; CVP, central venous pressure; HR, heart rate; MAP, mean arterial pressure; PADP, pulmonary artery diastolic pressure; PASP, pulmonary artery systolic pressure; PCW, pulmonary capillary wedge; RV, right ventricular; and SBP, systolic blood pressure.

*Diagnosis of shock requires ≥1 criteria to be present along with cardiac index <2.0 L/min/m² and SBP <90 mm Hg.

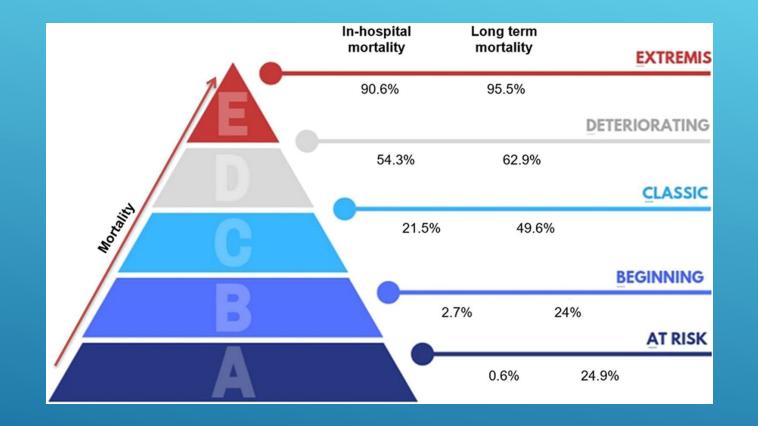
Society for Cardiovascular Angiography and Interventions (SCAI) Cardiogenic Shock Criteria

Stage	Bedside Findings	Selected Laboratory	Hemodynamics
		Markers	
A: At risk	Normal venous pressure	Normal renal function	SBP>100 mm Hg
	Clear lungs	Normal lactate	Hemodynamics: Normal
Normotensive	Warm extremities		
Normal perfusion	Strong palpable pulses		
Cause for risk for	Normal mentation		
shock such as large			
myocardial infarction			
or HF			

Society for Cardiovascular Angiography and Interventions (SCAI) Cardiogenic Shock Criteria (con't.)

B: Beginning	Elevated venous	Preserved renal	a) SBP <90 mm Hg
shock ("pre-	pressure	function	b) MAP <60 mm Hg or
shock")	Rales present	Normal lactate	c) >30 mm Hg decrease
	Warm extremities	Elevated BNP	from baseline SBP
Hypotension	Strong pulses		HR >100 bpm
Normal	Normal mentation		Hemodynamics: CI ≥2.2
perfusion			L/min/m ²

Society for Cardiovascular Angiography and Interventions (SCAI) Cardiogenic Shock Criteria (con't.)


C: Classic	Elevated venous	Impaired renal	SBP <90 mm Hg; MAP
cardiogenic	pressure	function	<60 mm Hg; >30 mm Hg
shock	Rales present	Increased lactate	from baseline SBP despite
	Cold, ashen, livedo	Elevated BNP	drugs and temporary
Hypotension	Weak or nonpalpable	Increased LFTs	MCS
Hypoperfusion	pulses	Acidosis	HR >100 bpm
	Altered mentation		Hemodynamics: CI ≤2.2
	Decreased urine		L/min/m ² ; PCW >15 mm
	output		Hg; CPO <0.6 W; PAPi
	Respiratory distress		<2.0; CVP-PCW >1.0

Society for Cardiovascular Angiography and Interventions (SCAI) Cardiogenic Shock Criteria (con't.)

D: Deteriorating	Same as stage C	Persistent or	Escalating use of pressors or	
Worsening		worsening values of	MCS to maintain SBP and	
hypotension		stage C	end-organ perfusion in	
Worsening			setting of stage C	
hypoperfusion			hemodynamics	
E: Extremis	Cardiac arrest	Worsening values of	SBP only with resuscitation	
Refractory	CPR	stage C laboratories	PEA	
hypotension			Recurrent VT/VF	
Refractory				
hypoperfusion				

BNP indicates brain natriuretic peptide; CI, cardiac index; CPO, cardia power output; CPR, cardiopulmonary resuscitation; CVP, central venous pressure; HR, hear rate; LFT, liver function tes MAP, mean arterial blood pressure; MCS, mechanica circulatory support; PAPi, pulmonary artery pulsatili index; PCW, pulmonary capillary wedge pressures; PEA, pulseless electrical activity; SBP, systolic blood pressure; VF, ventricular fibrillation; and VT, ventricular tachycardia.

Intravenous Inotropic Agents Used in the Management of HF

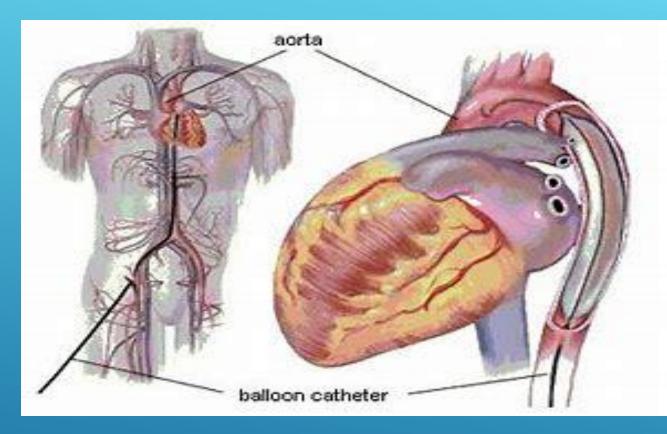
Inotropic Agent	Dose (mcg	g/kg)	Drug Kinetics	Effe	cts		_	Adverse Effects	Special	
	Bolus	Infusion	and	СО	HR	SVR	PVR		Considerations	
		(/min)	Metabolism							
Adrenergic agonis	sts									
Dopamine	NA	5–10	t _{1/2} : 2–20 min	1	1	\leftrightarrow	\leftrightarrow	T, HA, N, tissue	Caution: MA9-1	
	NA	10–15	R, H, P	1	1	↑	\leftrightarrow	necrosis		
Dobutamine	NA	2.5–20	t _{1/2} : 2–3 min H					↑/↓BP, HA, T, N, F,	Caution: MAO-I;	
				1	↑	\leftrightarrow	\leftrightarrow	hypersensitivity	CI: sulfite allergy	

Intravenous Inotropic Agents Used in the Management of HF (con't.)

Vasopressors									
Epinephrine	NR	5–15 mcg/min	t _{1/2} : 2–3 min	↑	1	\uparrow (\downarrow)	\leftrightarrow	HA, T	Caution: MAO-I
		15–20 mcg/min	t _{1/2} : 2–3 min	↑	↑ ↑	↑ ↑	↔	НА, Т,	Caution: MAO-I
Norepinephrine	NR	0.5–30 mcg/min	t _{1/2} : 2.5 min	\leftrightarrow	↑	$\uparrow \uparrow$	↔	↓ HR, tissue necrosis	Caution: MAO-I

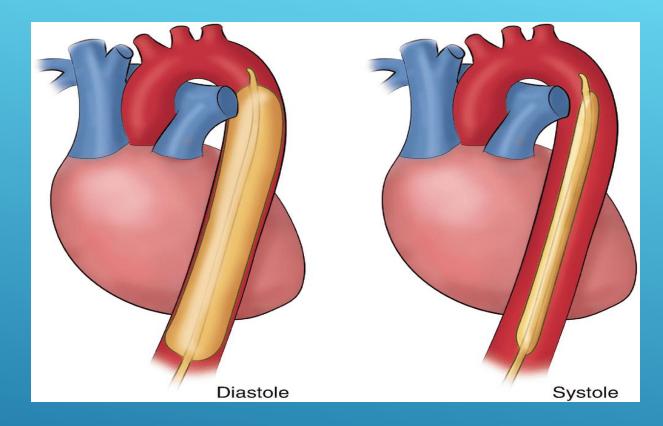
BP indicates blood pressure; CI, contraindication; CO, cardiac output; F, fever; H, hepatic; HA, headache; HF, heart failure; HR, heart rate; LFT, liver function test; MAO-I, monoamine oxidase inhibitor; N, nausea; NA, not applicable; NR, not recommended; P, plasma; PDE, phosphodiesterase; PVR, pulmonary vascular resistance; R, renal; SVR, systemic vascular resistance; T, tachyarrhythmias; and t1/2, elimination half-life. Up arrow means increase. Side arrow means no change. Down arrow means decrease. Up/down arrow means either increase or decrease.

Intravenous Inotropic Agents Used in the Management of HF (con't.)

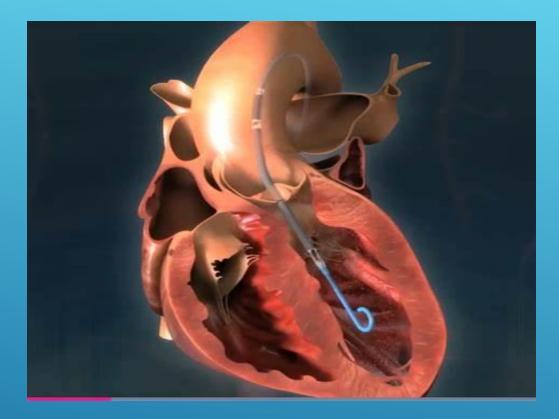

PDE 3 inhibitor									
Milrinone	NR	0.125–0.75	t _{1/2} : 2.5 h	↑	↑	↓	\downarrow	T, ↓BP	Accumulation may occur
			н						in setting of renal
									failure; monitor kidney
									function and LFTs

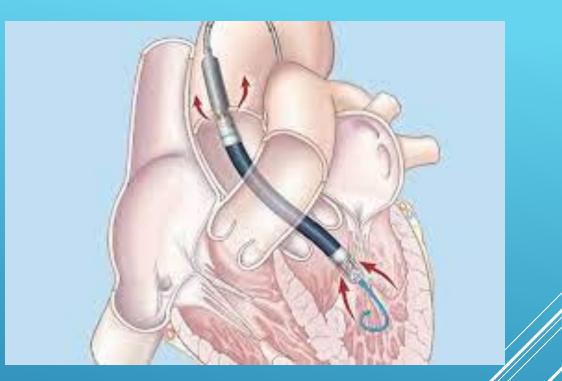
 While inotropic agents are used widely, mortality is higher with an increased number of prescribed inotropes/vasopressors.
 Furthermore, catecholamine therapy is associated with significant limitations including arrhythmias, increased myocardial oxygen consumption, and inadequate circulatory support

VASOPRESSOR/INOTRPES

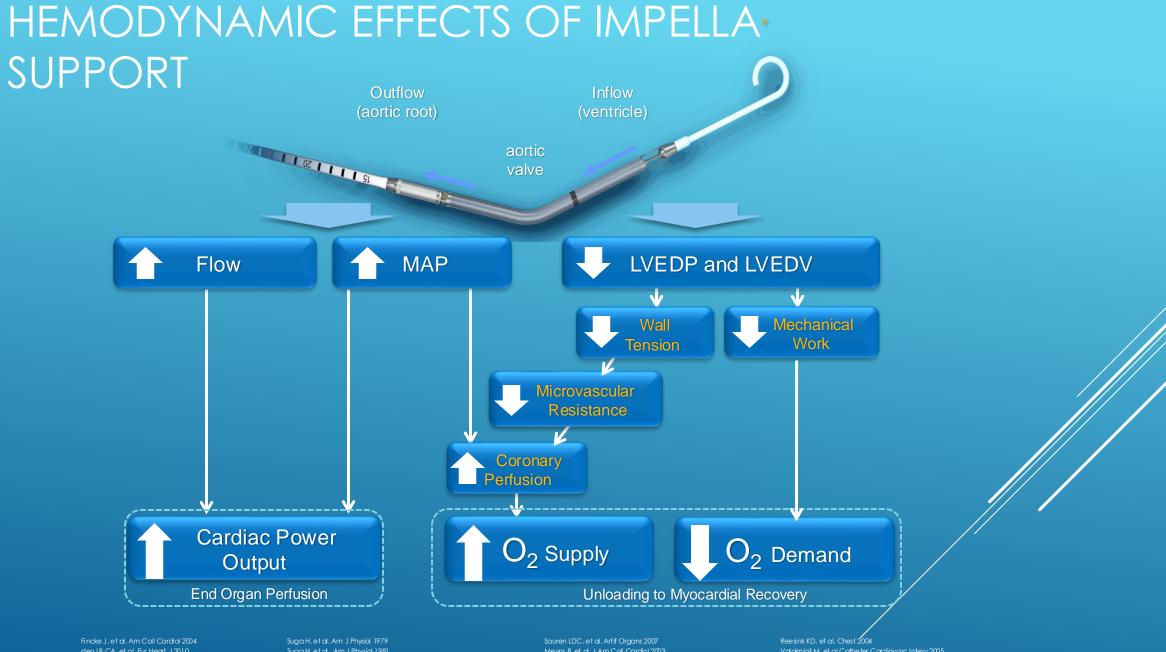

- MCS devices offer significant advantages over vasopressor therapy including substantial cardiovascular support without increased risk of myocardial ischemia and possible decreased myocardial oxygen demand.
- Thus, early use of support devices is an important therapeutic intervention. Options for acute percutaneous MCS include the intra-aortic balloon pump (IABP), axial flow pumps (Impella LP 2.5, Impella CP), left atrial-to-femoral arterial ventricular assist devices (Tandem Heart) and venous-arterial extracorporeal membrane oxygenation (ECMO).

MCS

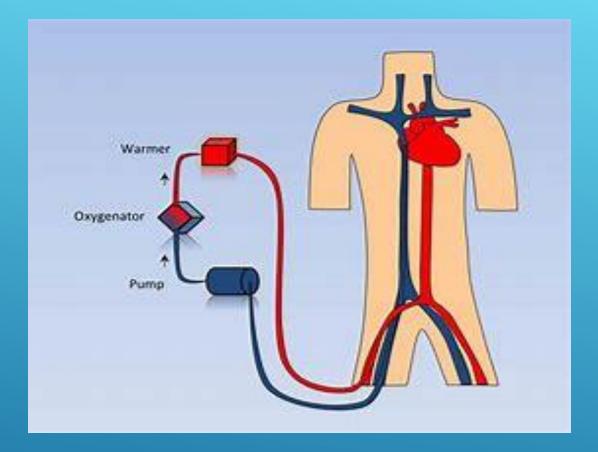




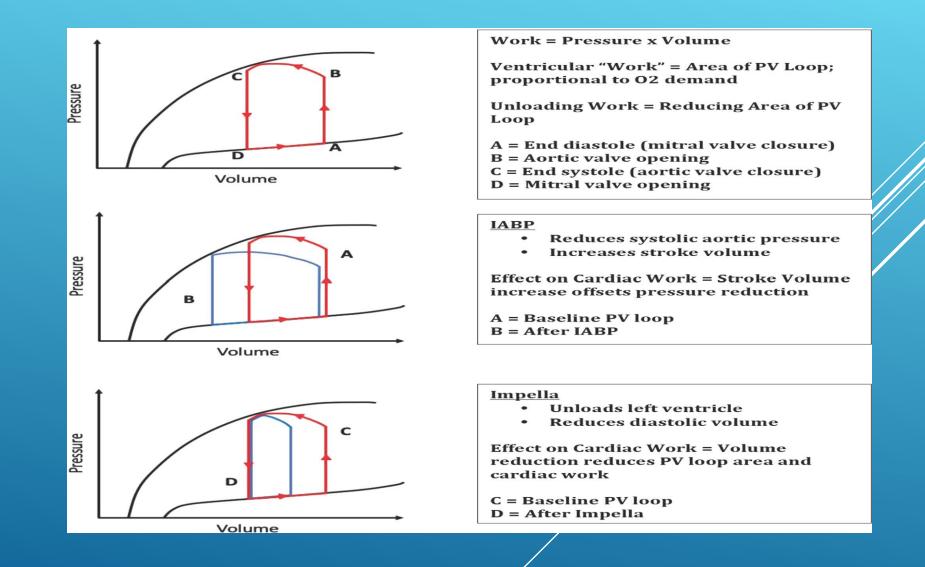
IABP



IMPELLA


den UI CA, et al. Eur Heart J 2010 Mendoza DD, et al. AMJ 2007 Torgersen C, et al. Crit Care 2009 Torre-Amione G, et al. J Card Fail 2009 Suga H. et al. Am J Physiol 19/9 Suga H. et al. Am J Physiol 1981 Burkhoff D. et al. Am J Physiol Heart Circ 2005 Burkhoff D. et al. Mechanical Properties Of The Heart And Its Interaction With The Vascular System. (White Paper) 2011 Sauren LDC, et dl. Artit Organs 200/ Meyns B, et dl. J Am Coll Cardiol 2003 Remmelink M, et dl. atheter.Cardiovasc Interv 2007 Aqel RA, et al. J Nucl Cardiol 2009 Lam K., et al. Clin Res Cardiol 2009 Ree sink KD, et al. Chest 2004 Vargimigfi M, et al. Catheter Cardiovasc Interv 2005 Remmelink M, et al. Catheter Cardiovasc Interv 2010 Naidu S, et al. Novel Circulation.2011 Weber DM, et al. Cardiac Interventions Today Supplement Aug/Sep 2009

Temporary Devices: Tandem Heart pVAD


- Continuous-flow centrifugal assist device placed extracorporeally
- Cannula in femoral vein through intraatrial septum into LA
- Pump withdraws oxygenated blood from the left atrium, propels it by a magnetically driven impeller through the outflow port
- Blood returns into femoral artery via arterial cannula

TANDEM HEART

	IABP	IMPELLA	TANDEMHEART	VA-ECMO
Cardiac Flow	0.3-0.5 L/ min	1-5L/ min (Impella 2.5, Impella CP, Impella 5)	2.5-5 L/ min	3-7 L-min
Mechanism	Aorta	$LV \rightarrow AO$	$LA \rightarrow AO$	$RA \rightarrow AO$
Maximum implant days	Weeks	7 days	14 days	Weeks
Sheath size	7-8 Fr	7-8 Fr 13-14 Fr Impella 5.0 - 21 Fr		14-16 Fr Arterial 18-21 Fr Venous
Femoral Artery Size	>4 mm	>4 mm Impella 2.5 & CP - 5-5.5 mm Impella 5 - 8 mm		8 mm
Cardiac synchrony or stable rhythm	Yes	No	No	No
Afterload	\downarrow	t	1	↑ ↑↑
MAP	Ť	<u></u>	↑ ↑	↑ ↑
Cardiac Flow	1	↑ ↑	↑ ↑	† †
Cardiac Power	Ť	↑↑	↑ ↑	¢↑
LVEDP	Ļ	t†	$\downarrow\downarrow$	\leftrightarrow
PCWP	Ļ	$\downarrow\downarrow$	$\downarrow\downarrow$	\leftrightarrow
LV Preload		††	$\downarrow\downarrow$	\downarrow
Coronary Perfusion	Ť	Ť		
Myocardial oxygen demand	Ļ	$\downarrow\downarrow$	$\leftrightarrow \downarrow$	\leftrightarrow

MCS

Evaluation and Management of Cardiogenic Shock

Recommendations for Evaluation and Management of Cardiogenic Shock

Referenced studies that support the recommendations are summarized in the Online Data Supplements.

COR	LOE	Recommendations
		1. In patients with cardiogenic shock, intravenous inotropic support should
1	B-NR	be used to maintain systemic perfusion and preserve end-organ
		performance.
		2. In patients with cardiogenic shock, temporary MCS is reasonable when
2a	B-NR	end-organ function cannot be maintained by pharmacologic means to
		support cardiac function.

Evaluation and Management of Cardiogenic Shock (con't.)

2a	B-NR	3. In patients with cardiogenic shock, management by a multidisciplinary team experienced in shock in reasonable.
2b	B-NR	4. In patients presenting with cardiogenic shock, placement of a PA line may be considered to define hemodynamic subsets and appropriate management strategies.
2b	C-LD	5. For patients who are not rapidly responding to initial shock measures, triage to centers that can provide temporary MCS may be considered to optimize management.

Cardiogenic Shock remains lethal

- Early Revascularization improves survival
- Mechanical Circulatory Support is redefining the treatment paradigm
- Protocol Driven Approaches are promising

CONCLUSION