🖊 Acids vs. Bases

• Normal Acid:Base ratio ≈ 1:20 → Meaning for every 1 acid molecule, there are 20 base molecules to maintain balance.

- Acid = a substance that donates protons (H⁺ ions).
- Base = a substance that receives protons (H⁺ ions).
- Strength of an acid or base depends on how easily it gives or takes hydrogen ions (H⁺) in water.

In water = the biological solvent.

🖊 pH Concept

- **pH** tells **how much H**⁺ is in a solution.
- pH is an *indirect measure* of [H⁺].

Formula: \rightarrow pH = -log[H⁺] (as H⁺ increases, pH drops)

Important detail:

Hydrogen ions do not float free — they are linked to adjacent water molecules by hydrogen bonds (H_3O^+).

- If [H⁺] doubles, pH drops by 0.3.
- Normal plasma pH = 7.36–7.44 (slightly alkaline, not exactly neutral).

pH 7.0 is chemically neutral, but in the body it's **fatal**.

рН	[H⁺]
7.40	40 nM
7.36	44 nM
7.44	36 nM
7.00	100 nM

Buffers Overview

Buffers = substances that **stabilize pH** by accepting or donating H⁺ ions.

• Extracellular buffers (in plasma):

Main: Carbonic acid/Bicarbonate (H₂CO₃/HCO₃⁻) system.

Intracellular buffers (inside cells):

Proteins (like Albumin).

Phosphoric acid / Hydrogen phosphate system (H₃PO₄/H₂PO₄⁻/HPO₄²⁻).

- Special buffer:
- Hemoglobin binds or releases H⁺ depending on needs.

• Equation to relate them: \rightarrow Henderson-Hasselbalch equation \rightarrow pH = 6.1 + log([HCO₃⁻]/(0.03 × PCO₂)) (Modified form: [H⁺] = 24 × PCO₂ ÷ [HCO₃⁻])

- Lungs control CO₂ (fast).
- Kidneys control HCO₃⁻ (slow).

🖉 Plasma pH Balance Diagram

H⁺ input comes from:

- **Diet** (Fatty acids, Amino acids).
- Metabolism (CO₂, Lactic acid, Ketoacids).
- Buffers work to neutralize:
- HCO₃[−] in plasma.
- Proteins, Hemoglobin, Phosphates inside cells.
- Phosphates and Ammonia in urine.

H⁺ output:

- Respiration removes CO₂ (lungs).
- Kidneys excrete H⁺ (urine).

Organs Involved in Acid-Base Balance

- 🔴 Blood and Plasma:
- Blood stays balanced with plasma (the liquid part of blood).
- Blood has high buffer capacity (this means it can resist changes in pH).

W Haemoglobin (inside red blood cells):

- It's the **main buffer** for **CO₂** (carbon dioxide).
- It stops pH from changing too much.
- Other buffers: bicarbonate (HCO₃⁻) and proteins/phosphates.
- 📏 Side note: Bicarbonate is the major extracellular buffer system.

Lungs (Ventilation):

- Lungs get rid of CO₂ by breathing.
- We normally remove about 12,000 mmol of CO₂ every day.

Normal If you breathe faster → You throw out more CO₂ → You get rid of H⁺ ions → Less acidic (prevent acidosis). Normal If you breathe slower → CO₂ builds up → H⁺ ions build up → More acidic (causes acidosis).

- lmportant:
- **V** Breathing = Hypoventilation = Acidosis.
- **The Breathing = Hyperventilation** = Alkalosis.

🛀 Kidneys:

- Kidneys reabsorb bicarbonate (HCO₃⁻) about 4,000–5,000 mmol/day.
- They excrete fixed acids like sulfuric acid and phosphoric acid.
- About 100 mmol/day of fixed acid is removed.

🚾 Compare:

- Lungs remove **volatile acid** (CO₂).
- Kidneys remove **fixed acids** (that can't evaporate).

Liver and Bone in Acid-Base Balance

🇳 Liver:

- Makes **CO₂** by **complete oxidation** of carbs, fats, proteins.
- About 20% of your body's daily CO₂ is made by the liver.
- Liver also handles:
- Metabolism of organic acids (like lactate, ketones, amino acids).
- Metabolism of ammonium (NH₄⁺):
- When liver changes NH_4^+ to urea $\rightarrow H^+$ is made \rightarrow adds to acid load.
- **Production of plasma proteins** (mainly albumin).

 \checkmark Albumin helps maintain the anion gap (important for acid-base balance).

Pones:

- Bones have a mineral called **hydroxyapatite** [Ca₁₀(PO₄)₆(OH)₂].
- It acts like a **buffer**!
- Bone can **absorb** H⁺ to help when there is too much acid.
- Bone exchanges H⁺ for calcium (Ca²⁺), sodium (Na⁺), and potassium (K⁺).

😢 Chronic acidosis (too much acid for a long time):

• Bone loses minerals → Bone becomes weaker → Fracture risk increases.

Metabolism Produces Acids Continuously

Metabolism = Acid production non-stop.

Sources:

- Volatile acids (like CO₂, H₂CO₃): 12,000–24,000 mmol/day → removed by lungs.
- Fixed acids (lactate, phosphate, sulfate, etc.): 70–100 mmol/day \rightarrow removed by kidneys.
- **Buffering System**:

- $CO_2 + H_2O \rightleftharpoons H_2CO_3 \rightleftharpoons H^+ + HCO_3^-$
- Hemoglobin helps buffer CO₂ inside red blood cells.
- **Excretion**:
- Lungs remove CO₂ by breathing.
- Kidneys remove H⁺ and reabsorb bicarbonate (HCO₃[−]).
- \mathbb{N} pCO₂ (pressure of CO₂) is regulated by breathing rate.
- Faster breathing = lower pCO₂
- Slower breathing = higher pCO₂
- I Total CO₂ =
- [Bicarbonate] + [Carbonic Acid] + [Carbamino CO₂] + [Dissolved CO₂].

Intracellular pH Is Critical

Inside the cells, pH control is **most important** for survival.

- Plasma pH affects intracellular pH.
- Doctors use **blood (plasma) tests** to understand what's happening **inside the cells** because direct measurement is hard.
- 🖊 Examples:
- Low plasma pH (acidosis) → means intracellular acid is high.
- High plasma pH (alkalosis) \rightarrow less intracellular acid.

We look at extracellular results to guess about intracellular conditions.

More Details about Intracellular vs Extracellular pH

- Intracellular pH (inside cells):
- Around 6.8 at 37°C (slightly acidic compared to blood).
- This keeps metabolic processes working properly.
- Extracellular pH (blood and plasma):
- Around **7.4**.
- It's higher by 0.5–0.6 units than intracellular pH.
- Creates a **fourfold gradient**: pushes H⁺ out of cells (to protect cells from acid overload).
- Flow body maintains intracellular pH:
- Intracellular buffering (chemical/metabolic).
- Arterial pCO₂ control (through breathing).
- Loss of fixed acids from cells to extracellular fluid.

Respiratory System and pH Control

- CO2 and breathing:
- pCO_2 , H^+ , and pO_2 control breathing rate.
- Acidemia (low pH = more H⁺):
- Stimulates brain center \rightarrow breathing rate increases \rightarrow get rid of CO₂.
- Alkalemia (high pH = less H⁺):
- Suppresses brain center \rightarrow breathing rate decreases \rightarrow retain CO₂.
- $^{
 m Normal}$ ventilation keeps pCO₂ around 40 mmHg.
- **Hyperventilation** \rightarrow CO₂ decreases \rightarrow causes alkalosis.
- **Hypoventilation** \rightarrow CO₂ builds up \rightarrow causes acidosis.

Renal System and pH Control

- 🖼 Kidneys do 2 big jobs:
- Proximal tubules:
- Reabsorb bicarbonate (HCO₃⁻) to prevent its loss.
- Produce ammonium (NH₄⁺) to help buffer acid.

Distal tubules:

- Excrete H⁺ directly.
- Make titratable acidity (TA) using phosphate and ammonium.
- Add NH₄⁺ into urine.
- **T** Urine can become very acidic (pH = 4.5):
- This allows kidneys to excrete **1000x more acid** if needed!

Summary:

- Bicarbonate reabsorption prevents alkalosis.
- Ammonium production removes extra acid.
- Low urine pH = extreme acid removal if necessary.

Proximal Tubule - NaHCO₃ Reabsorption

Main Function:

- Reabsorb **bicarbonate (HCO₃⁻)** to **help maintain blood pH**.
- How it works (step-by-step):
- 1. Na⁺/H⁺ exchanger (NHE3):
- Pushes Na⁺ in and pushes H⁺ out into the urine (lumen).
- 2. The H⁺ in the urine combines with $HCO_3^- \rightarrow$ forms $CO_2 + H_2O$ (using the enzyme carbonic anhydrase).
- 3. **CO₂** then **diffuses** (moves) **back into the cell** easily.
- 4. Inside the cell, $CO_2 + H_2O$ are turned back into **HCO₃**⁻.
- 5. **HCO₃⁻ is sent into the blood** \rightarrow keeps blood from becoming too acidic.

lmportant:

• Without this reabsorption, you would lose too much HCO₃[−] in urine → blood would get acidic!

Thick Ascending Limb (TAL) Transport

Main Function:

- Reabsorb Na⁺, K⁺, and Cl⁻ ions \rightarrow helps create the concentration gradient needed to concentrate urine.
- How it works:
- 1. Na⁺/K⁺/2Cl⁻ cotransporter (NKCC2) pulls these ions into the cell from urine.
- 2. Some K⁺ leaks back out into the urine \rightarrow makes the urine positively charged.
- 3. This positive charge helps **pull Ca²⁺ and Mg²⁺** (calcium and magnesium) into the blood.
- Big idea: this area is very important for saving salts and water.

Secretion of H^+ in α -Intercalated Cells (Cortical Collecting Duct)

Main Function:

- Secrete acid (H^+) into the urine \rightarrow regulates blood pH.
- How it works:
- 1. H⁺-ATPase pumps H⁺ out into urine.
- 2. Inside the cell, $CO_2 + H_2O$ are made into H^+ and HCO_3^- .
- 3. **HCO₃⁻ goes to the blood** (via Cl⁻/HCO₃⁻ exchanger).
- **V** This way:
- Acid is thrown into the urine.
- Bicarbonate is kept inside the blood (prevents acidosis).

Secretion of HCO_3^- in β -Intercalated Cells (Cortical Collecting Duct)

Main Function:

- Secrete **bicarbonate (HCO₃⁻)** when you have **alkalosis** (blood is too basic).
- How it works:
- 1. **HCO₃**⁻ is pushed **into the urine** (via Pendrin exchanger).

2. H⁺ is kept inside the blood.

V This fixes the problem by getting rid of extra base (bicarbonate) \rightarrow helping lower blood pH.

Principal Cell - Sodium (Na⁺) Transport (Cortical Collecting Duct)

Main Function:

- Reabsorb **Na⁺** and **secrete K⁺** controlled by **aldosterone** hormone.
- How it works:
- 1. **ENaC channel** lets Na⁺ come inside the cell.
- 2. Na⁺/K⁺ ATPase pumps Na⁺ into blood and K⁺ out into urine.

V This controls **salt and water balance**, and **potassium levels**.

Summary of Bicarbonate Reabsorption in the Kidney

- 対 Goal:
- Reabsorb almost **all filtered HCO**³⁻ back into blood.
- Excrete acid (H⁺) in urine.
- Numbers:
- 85% reabsorbed in **proximal tubule**.
- 10% in **loop of Henle**.
- 5% in distal tubule and collecting duct.

Very little bicarbonate is lost in urine — kidney saves it to protect blood pH.

Proximal Tubule - H⁺ Secretion and HCO₃[−] Reabsorption

- **Simple steps**:
- 1. **H⁺ is secreted** into urine.
- 2. It combines with HCO₃⁻ to form H₂CO₃ (carbonic acid).
- 3. H_2CO_3 breaks down into $CO_2 + H_2O$.
- 4. **CO₂ diffuses back** into the cell.
- 5. Inside the cell: $CO_2 + H_2O$ make new **HCO₃**⁻, which is sent to the blood.

This saves bicarbonate and throws out acid.

Distal Tubule - Final H⁺ Secretion

- 🛀 Main Function:
- Excrete the last bit of acid (H⁺) that wasn't excreted earlier.
- How it works:
- 1. **H⁺ is actively pumped** into the urine.
- 2. H^+ combines with HCO_3^- inside the cell $\rightarrow H_2CO_3 \rightarrow CO_2 + H_2O$.
- 3. Very strong acidic urine pH (4.5) can be achieved!

This removes the final acid and protects blood from becoming too acidic.

Phosphate Buffering

Main Function:

- Helps **trap H**⁺ safely in the urine without making the urine extremely acidic.
- How it works:
- 1. H^+ binds to **phosphate (HPO₄²⁻)** \rightarrow forms $H_2PO_4^-$ (which is excreted).
- 2. This helps remove H⁺ without hurting urine too much.

Bicarbonate is made at the same time and returned to blood.

Ammonia (NH₃) Buffering

Main Function:

- Helps **remove acid** when acid levels are very high.
- How it works:

•

- 1. Cells make **ammonia (NH₃)**.
- 2. NH_3 diffuses into urine and binds to secreted $H^+ \rightarrow$ forms NH_4^+ .
- 3. NH₄⁺ is trapped in urine and removed.

V Each time NH_4^+ is made, **new bicarbonate (HCO₃-)** is made and sent into the blood.

Part	Main Function	Key Transport/Action	Goal
Proximal Tubule	Reabsorb HCO₃ [−]	Na ⁺ /H ⁺ exchanger	Save bicarbonate,
		(NHE3), Carbonic	remove H⁺
		Anhydrase	
Thick Ascending Limb	Reabsorb Na⁺, K⁺, Cl⁻	NKCC2 cotransporter	Create salt gradient for
(TAL)			urine concentration
α-Intercalated Cells	Secrete H ⁺ into urine	H ⁺ ATPase	Remove acid, reabsorb
(Collecting Duct)			HCO₃⁻
β-Intercalated Cells	Secrete HCO₃ [–] into	Pendrin (Cl⁻/HCO₃⁻	Remove extra base
(Collecting Duct)	urine (in alkalosis)	exchanger)	
Principal Cells	Reabsorb Na⁺, secrete	ENaC + Na ⁺ /K ⁺ ATPase	Maintain salt, water,
(Collecting Duct)	K+	(Aldosterone control)	potassium balance
Distal Tubule +	Final acid secretion	Active H ⁺ transport	Create very acidic urine
Collecting Duct			(pH 4.5)
Phosphate Buffering	Trap H ⁺ safely	$\rm H^+$ binds to $\rm HPO_4^{2-}$ \rightarrow	Excrete H ⁺ without
		H₂PO₄ [−]	making urine too acidic
Ammonia (NH₃)	Remove large amounts	$\rm NH_3$ binds $\rm H^+ \rightarrow \rm NH_4^+$	Excrete H ⁺ and make
Buffering	of H⁺		new HCO₃ ⁻

🛝 Respiratory Alkalosis

Definition:

• It's a **primary disorder** where **pH goes up** (alkalosis) because of **low PaCO₂** (carbon dioxide pressure falls below 35 mmHg).

• This is called **hypocapnia** (low CO₂ in the blood).

Time Course:

- Acute:
- pH rises immediately because of a sudden drop in CO₂.
- Chronic:

• Over 3–4 days, the **kidneys compensate** by **excreting bicarbonate (HCO₃⁻)** to lower the pH back closer to normal.

Causes:

- **CNS Disease** (e.g., brain tumor affects breathing control)
- **Toxins** (e.g., salicylates early phase causes hyperventilation)
- **High Altitude** (low oxygen \rightarrow hyperventilation)
- Pulmonary Embolism or Pneumonia (breathing faster due to lung problem)
- Sepsis (infection → changes in breathing)

Liver Cirrhosis (affects metabolism \rightarrow breathing changes)

Acute: High pH now

Chronic: Kidneys remove HCO₃[−] to bring pH back

🛝 Respiratory Alkalosis Summary Table

- If pH > 7.45, think respiratory alkalosis.
- The primary problem = \downarrow PaCO₂. •
- The compensatory response = \downarrow HCO₃⁻.

Compensation:

- Acute: ٠
- ٠ 1–2 mmol/L decrease in HCO₃⁻ for every 10 mmHg decrease in PaCO₂.
- Chronic:

4–5 mmol/L decrease in HCO3⁻ for every 10 mmHg decrease in PaCO₂ (because kidneys have more time to adjust).

Simple Summary:

Туре	What Happens	HCO₃ ⁻ change
Acute	Fast drop in $CO_2 \rightarrow$ fast pH rise	\downarrow 1–2 mmol/L
Chronic	Slow adaptation \rightarrow kidneys	\downarrow 4–5 mmol/L
	lower HCO₃ ⁻ more	

Important Overlapping Disorders:

- Sighing Syndrome (excessive deep breaths without a real need) •
- Panic Disorder (anxiety attacks cause hyperventilation)
- Cardiopulmonary Disease (lung/heart diseases lead to breathing problems)

These overlap around **Hyperventilation Syndrome**, where people breathe too much and lose too much $CO_2 \rightarrow$ leading to respiratory alkalosis.

🤜 Simple Venn Diagram Idea:

CSS

CopyEdit

```
[Sighing Syndrome]
       ١
```

[Panic Disorder] - [Cardiopulmonary Disease]

```
١
    1
```

[Hyperventilation Syndrome]

Metabolic Acidosis

Definition:

- Primary disorder where pH decreases because of: •
- Loss of bicarbonate (HCO₃⁻) ٠
- OR Fixed addition of H⁺ (acid). ٠

Anion Gap Concept:

- When there's **extra acid** added \rightarrow **High Anion Gap** (AG).
- If bicarbonate is lost but no extra acid \rightarrow Normal Anion Gap.

Anion Gap formula:

AG=[Na+]-([Cl-]+[HCO3-]) Normal range: around **8–12 mEq/L**.

Low Albumin Note:

- Albumin is negatively charged.
- If albumin is low, it **lowers AG** → you must **adjust** AG: Add 2.5 mEq/L to AG for every 1 g/dL ↓ albumin Add 2.5 mEq/L to AG for every 1 g/dL ↓ albumin

Metabolic Acidosis = \downarrow pH

If extra acids (e.g., lactate, ketones) \rightarrow High AG If bicarbonate lost (e.g., diarrhea) \rightarrow Normal AG

If extra acids (e.g., lactate, ketones) \rightarrow High AG If bicarbonate lost (e.g., diarrhea) \rightarrow Normal AG

Causes of Metabolic Acidosis

Types:

- High Anion Gap Metabolic Acidosis (HAGMA):
- Loss of bicarbonate AND addition of acids.
- Normal Anion Gap Metabolic Acidosis (NAGMA):
- Loss of bicarbonate only, chloride increases to compensate.

Quick Bar Chart (visualized on your slide):

Туре	Changes	Causes
High AG	HCO₃⁻ ↓, AG 个	Lactate, Ketones, Toxins
Normal AG	HCO₃⁻ ↓, CI⁻ ↑	Diarrhea, Renal issues

Causes: High vs Normal Anion Gap

- High AG Acidosis (addition of unmeasured acids):
- Lactate
- **Ketones** (e.g., DKA, starvation)
- **Toxins** (methanol, ethylene glycol, salicylates)
- Normal AG Acidosis (loss of bicarbonate, no acid accumulation):
- Diarrhea
- Renal Tubular Acidosis (RTA)
- Ureteral diversions

Simple Table:

High AG	Normal AG
Lactic acidosis	Diarrhea
Ketoacidosis	RTA
Toxins (methanol, aspirin)	Ureteral issues

Frable of Mechanisms

This slide summarizes causes:

- High AG Causes: Lactic acidosis, ketoacidosis, methanol, ethylene glycol, aspirin.
- Normal AG Causes: Diarrhea, RTA (Type 2, Type 4), ureterosigmoidostomy.

Tiny Table Summary:

Increased AG	Normal AG
Methanol	Diarrhea
Lactic acidosis	RTA Type 2/4
DKA	Ureteral diversions

CAT MUDPILES Mnemonic

Mnemonic for causes of High Anion Gap Acidosis:

Letter	Cause
С	Carbon monoxide, Cyanide, Congenital heart
	disease
А	Aminoglycosides
Т	Theophylline, Toluene
Μ	Methanol
U	Uremia
D	Diabetic ketoacidosis
Р	Paracetamol, Phenformin, Paraldehyde
1	Iron, Isoniazid, Inborn errors of metabolism
L	Lactic acidosis
E	Ethanol, Ethylene glycol
S	Salicylates

⁴ Non-Anion Gap Metabolic Acidosis

Causes:

GI Loss of HCO₃ [−]	Renal Acidosis
Diarrhea	Hypokalemia (RTA 2/1)
Ureterosigmoidostomy	Hyperkalemia (RTA 4)
GI Fistula, Villous Adenoma	Tubulointerstitial Disease

NAGMA = Loss of bicarbonate

- From GI \rightarrow Diarrhea, fistulas

- From kidneys \rightarrow RTA types

P Non-Anion Gap Metabolic Acidosis

Definition:

- Normal anion gap (AG).
- Hyperchloremic acidosis.
- Causes:
- GI bicarbonate loss:
- **Diarrhea** \rightarrow losing HCO₃⁻ \rightarrow chloride (Cl⁻) replaces bicarbonate (HCO₃⁻).
- **External fistula** \rightarrow leaking fluids rich in bicarbonate.
- Ureterosigmoidostomy / ileal loop conduit → urine redirected to intestine, bicarbonate loss.
- Renal bicarbonate loss (Renal Tubular Acidosis RTA):
- **Type I RTA (Distal, Classical)** \rightarrow Proton secretion defect \rightarrow Urine pH >5.5 \rightarrow hypokalemia, kidney stones.
- **Type II RTA (Proximal, Fanconi)** \rightarrow Bicarbonate reabsorption defect \rightarrow Urine pH <5.5 \rightarrow hypokalemia.

• **Type IV RTA (Hyperkalemic)** \rightarrow Hyporeninemic hypoaldosteronism \rightarrow high K⁺.

(Small table shown: summarizing defects + key features for each RTA)

Diagnosis Flowchart (Hyperchloremic Metabolic Acidosis)

- Step 1: Check Urine Anion or Osmolal Gap:
- **High NH**₄⁺ (anion gap negative) \rightarrow Check bicarbonate excretion:
- If **increased** \rightarrow proximal RTA (or acetazolamide use).
- If **decreased** \rightarrow GI bicarbonate loss.
- Low NH₄⁺ (anion gap positive) → Look at urine pH and serum K⁺:
- pH <5.5 + high $K^+ \rightarrow$ Type IV RTA
- pH >5.5 + high $K^+ \rightarrow$ Voltage-dependent RTA
- pH >5.5 + normal or low $K^+ \rightarrow$ Classic distal RTA.

Compensation for Metabolic Acidosis

- General Rule:
- Primary problem = \downarrow pH < 7.35
- Primary defect = \downarrow HCO₃⁻
- Compensation = \downarrow PCO₂
- 🔶 Formulas:
- Expected PCO₂ = (1.5 × HCO₃⁻) + 8 (±2) (OR)
- PCO₂ = HCO₃⁻ + 15 (OR)
- PCO₂ = last 2 digits of pH × 100

(These help assess if compensation is appropriate.)

P Decreased Anion Gap

- Causes:
- Hypoalbuminemia (most common).
- Hypercalcemia (high calcium).
- **Hypermagnesemia** (high magnesium).
- Lithium intoxication (replaces sodium).
- Hypergammaglobulinemia (excess lgG).
- Bromide or iodide intoxication (interferes with lab tests).
- Summary Key:
- Low AG \rightarrow think hypoalbumin, high cations, or unmeasured anions.

P Metabolic Acidosis - Metabolic Effects

- Respiratory System:
- **Hyperventilation** to blow off CO₂.
- Shift of hemoglobin curve to the right initially (release more O_2), then shifts back left with prolonged
- acidosis (worsens O₂ delivery).
- **Decreased 2,3 DPG** \rightarrow poor O₂ delivery.
- Cardiovascular System:
- ↓ Heart contractility.
- Arrhythmias (especially if hyperkalemia).
- Other Effects:
- Increased bone resorption → osteoporosis (only with chronic acidosis).
 - K⁺ shifts out of cells \rightarrow hyperkalemia \rightarrow dangerous arrhythmias.

(Diagram shows brain, heart, lungs, kidneys — highlighting effects like tachycardia, hyperventilation, vasodilation.)

Hyperchloremic Metabolic Acidosis ↓ Measure Urine Anion Gap or Osmolal Gap ↓ Anion Gap Negative (↑ NH₄⁺) | - GI Losses (Diarrhea) | - Proximal RTA |

 \checkmark

Anion Gap Positive (↓ NH₄⁺) | - Type IV RTA | - Distal RTA (Voltage/Classic) |

Vardiovascular Effects: Acidosis vs. Alkalosis

Acidosis	Alkalosis
- Impaired cardiac contractility (heart can't pump	- Arteriolar constriction (narrowing of small
strongly)	arteries)
- Arteriolar dilation (small arteries widen)	- Reduced coronary blood flow (less blood to the
- Venoconstriction (veins tighten)	 Reduced anginal threshold (easier to get chest pain)
- Centralization of blood volume (blood moves to important organs)	 Decreased threshold for cardiac arrhythmias (irregular beats happen easier)
 Increased pulmonary vascular resistance (lungs' vessels tighten) 	
 Decreased cardiac output (heart pumps less blood) 	
- Decreased systemic BP (lowers overall blood pressure)	
 Decreased hepatorenal blood flow (liver and kidneys get less blood) 	

- Decreased threshold for cardiac arrhythmias (easy	
for irregular beats)	
- Less responsiveness to catecholamines (body	
hormones like adrenaline don't work well)	

Metabolic, Neurologic, and Respiratory Effects: Acidosis vs. Alkalosis

Acidosis	Alkalosis
Metabolic	Metabolic
- Insulin resistance (harder to control blood sugar)	- Stimulation of anaerobic glycolysis (makes more lactic acid)
- Inhibition of anaerobic glycolysis	- Formation of organic acids
- Reduction in ATP synthesis (less energy made)	 Decreased oxyhemoglobin dissociation (oxygen sticks to hemoglobin too much)
- Hyperkalemia (个 potassium)	- \downarrow Ionized calcium
- Protein degradation (muscles break down)	- Hypokalemia (\downarrow potassium)
- Bone demineralization (weak bones if chronic)	- Hypomagnesemia (\downarrow magnesium)
	- Hypophosphatemia (\downarrow phosphate)
Neurologic	Neurologic
- Inhibition of metabolism and cell-volume control	- Tetany (muscle spasms)
- Obtundation and coma	- Seizures
	- Lethargy
	- Delirium
	- Stupor
Respiratory	Respiratory
- Compensatory hyperventilation (breathing faster)	- Compensatory hypoventilation (breathing slows)
but risk of muscle fatigue	$ ightarrow$ hypercapnia (\uparrow CO ₂) and hypoxemia (\downarrow oxygen)

Mixed Acid-Base Disorders

- Metabolic and Respiratory Acidosis serious! (both cause acidosis → very bad)
- Metabolic and Respiratory Alkalosis serious! (both cause alkalosis → risky)
- Metabolic Acidosis & Respiratory Alkalosis mixed but can sometimes compensate
- Metabolic Alkalosis & Respiratory Acidosis mixed disorder
- Metabolic Acidosis & Alkalosis + Respiratory Disorder very mixed picture

Note: When **both are in same direction** (both acidic or both alkaline), it's worse because body can't compensate.

Δ Delta Gap (Mixed Disorders Detection)

- **Delta gap** = patient's anion gap normal anion gap.
- It's like an HCO_3^- equivalent: \rightarrow Every 1 unit increase in **anion gap** should match 1 unit decrease in HCO_3^- .
- If delta gap is higher than expected: \rightarrow *Extra* metabolic alkalosis also present.
- If delta gap is lower than expected: \rightarrow *Extra metabolic acidosis* also present.

Delta gap helps you spot hidden disorders!