#### Lecture 2: Acute Coronary Syndromes (ACS)

#### Core Pathophysiology:

"All are characterized by occlusion of flow, not increased O<sub>2</sub> demand"

- Could be:
- Unstable angina: subtotal occlusion Plaque rupture + Platleb aggregation 1.
- NSTEMI: subendocardial occlusion 2.
- STEMI: transmural (full-thickness) occlusion 3.

ACS is NOT a demand issue like stable angina; it's an issue of **supply failure due to clot**.

#### Platelet Cascade in Thrombus Formation

- Platelet adhesion 1.
- Triggered by endothelial injury  $\rightarrow$  exposure of collagen + vWF
- vWF binds Gplb •
- Collagen binds Gpla/lla . 2.
  - Platelet activation
- Platelet activation Releases: ADP: activates more platelets via P2Y12 receptors
- TXA<sub>2</sub>: promotes aggregation ( $^{\land}$  aspirin target) p by  $cox \mid \emptyset$ •
- 5-HT (serotonin): vasoconstriction
- Ca<sup>2+</sup>: for coagulation cascade
- 3. **Platelet aggregation**
- Gpllb/Illa bridges fibrinogen
- Final step → thrombin converts fibrinogen to fibrin
- Thrombin: "a potent platelet activator"

This is primary hemostasis. Get Step 3 = secondary hemostasis (coagulation cascade).

### Myocardial Necrosis Progression (based on time after occlusion):

| Time   | Area Affected                        |
|--------|--------------------------------------|
| 30 min | Subendocardium (first zone affected) |
| 4 h    | Subepicardium involvement            |
| 6–12 h | Transmural infarction                |

This is why early intervention is critical.

#### Unstable Angina (UA)

#### Also called Crescendo Angina

Suspect if:

- Chronic angina with increasing frequency/duration 1.
- 2. New-onset angina that is severe or occurs at rest
- 3. Rest angina (<48 hours)

### Diagnosis:

- Clinical + ECG
- ECG: ST depression, T wave inversion
- Cardiac markers: negative (differentiates from NSTEMI)

#### Classifications of Unstable Angina:

- Acute: rest pain within last 48h 1.
- 2. Subacute: rest pain occurred within last 48h but not ongoing
- 3. Primary vs. Secondary: secondary can be due to anemia, HTN, thyrotoxicosis, arrhythmia
- 4. Low vs High Risk (see TIMI)

#### + High-Risk Features:

A. Rest pain >20 min but <30 min B. Pulmonary edema C. New murmur D. Hypotension E. Bradycardia or tachycardia F. ST changes, LBBB, VT G. Diabetes mellitus (DM)

2 Developing inbo NOTEMI or STEMI

> the only way to differentiate between NSTEMI and UA

# IIMI Score for UA/NSTEMI

(Each = 1 point):

- 1. Age ≥ 65
- 2. ≥3 risk factors
- 3. Known CAD with stenosis ≥50%
- 4. ST changes
- 5.  $\geq 2$  anginal events in past 24-48h
- 6. Aspirin use in last 7 days
- 7. Elevated cardiac markers

→ Score ≥3 = high risk

# Treatment of Unstable Angina (UA) & NSTEMI

#### 📳 Initial Management Principles

- 1. CCU Admission
- Monitor vitals, ECG, arrhythmias
- 2. Aggressive Medical Therapy
  - Treat like MI, EXCEPT for thrombolysis/fibrinolytics

#### ysis/fibrinolytics doit have a true occlusion, 1 risk of bleeding

# State of the second sec

| Medication Class | Examples / Notes                                              |
|------------------|---------------------------------------------------------------|
| Antiplatelets    | Aspirin + P2Y12 inhibitor (e.g., clopidogrel)                 |
| Anticoagulants   | Heparin (usually LMWH like enoxaparin)                        |
| Beta-blockers    | First-line unless contraindicated (e.g., bradycardia, asthma) |
| Statins          | Atorvastatin (intensity matters!)                             |

Always assess for bleeding risks, especially with aspirin.

#### Symptom-Relieving Therapy

| Drug                  | Mechanism                                                                         |  |
|-----------------------|-----------------------------------------------------------------------------------|--|
| Nitrates              | Vasodilation $\rightarrow \downarrow$ preload $\rightarrow \downarrow O_2$ demand |  |
| GPIIb/IIIa inhibitors | e.g., Tirofiban, esp. if high-risk or undergoing PCI                              |  |
| Morphine              | (Not mentioned here, but used for severe unrelieved chest                         |  |
|                       | pain)                                                                             |  |

# % Cardiac Catheterization / Revascularization

Indicated if:

- Symptoms persist >48h despite meds
- High TIMI risk score
- Recurrent ischemia/arrhythmia
- $\checkmark$  PCI or CABG may be required depending on coronary anatomy.

# nost-Acute Management:

Continue:

- Aspirin
- Statins
- β-blockers
- Nitrates
- Reduce modifiable risk factors

III Invasive vs Conservative Management Strategy (Bottom right chart):

- Invasive = early cath for all high-risk
- Conservative = meds only unless symptoms recur or worsen Used based on TIMI risk and clinical judgment

### **Clinical Tip:**

Even if cardiac markers are negative and ECG is non-diagnostic, persistent symptoms, age, risk factors or TIMI score ≥3 justify more aggressive management.

#### Wyocardial Infarction (MI)

#### General Characteristics

is." a ruptured plague.

- "Thrombotic occlusion of a coronary artery previously narrowed by a therosclerosis."
- ~80% associated with mortality
- Half of deaths are pre-hospital



- Most have:
- Prior angina
- CAD risk factors
- History of arrhythmias

# 🖓 Clinical Features of MI

- 1. Chest pain:
- Severe, crushing, retrosternal
- May radiate to jaw, neck, arm, epigastrium
- 2. **Can be silent** in:
- Diabetics
- Elderly
- Women
- Postoperative patients
- 3. Associated symptoms:
- Nausea, vomiting
- Sweating, SOB
- Syncope
- 4. **Pain at rest**, especially:
- Early morning
- Lasts >30 min
- 5. Autonomic response:
- Anxious, clammy
- Bradycardia or tachycardia
- Initial normal BP, later drop
- Low-grade fever after 24h due to muscle necrosis
- 6. Presents as:
- Unexplained shock
- Hypertension
- Arrhythmias

#### / Diagnosis of MI

| Step       | Description                 |
|------------|-----------------------------|
| 1. History | Typical chest pain          |
| 2. PE      | Often non-specific          |
| 3. ECG     | STEMI vs NSTEMI distinction |

#### 🔍 A. NSTEMI

- ST depression, T wave inversion
- NO Q waves if found this is STEMI

🔍 B. STEMI

- ST elevation (transmural)
- Q wave may develop
- Earliest change = hyperacute T wave

#### **A** Q Wave Notes:

- Pathologic Q = **>0.04 sec**, depth ≥25% of R wave
- Seen in ≥2 contiguous leads
- Indicates necrosis
- Found in:
- V1–V3 (anterior MI)

# 🖋 Cardiac Markers

- 🔷 1. Troponin
- Most specific and sensitive
- Rises 4–6 h after injury
- Peaks at 12–24 h
- Remains elevated for 10–14 days
- X Not useful to detect reinfarction if <2 weeks</li>

# 🔷 2. CK-MB

- Rises 4–6 h
- Peaks 18–24 h
- Returns to normal in 48–72 h

|    | •          | ~  |            |   |        |           |
|----|------------|----|------------|---|--------|-----------|
| 81 | elevation/ | δī | depression | / | Turane | inversion |
|    |            |    |            |   |        |           |



Contiguous Leads in the ECG

Right Coronary

Left Anterior

Inferior

Septal Anterior

II, III, aVF

V1, V2, V3, V4

# **Used for reinfarction detection**

# MB2/MB1 ratio >1.5 = positive

# 3. Myoglobin

- Rises in 1–2 h
- Peaks 6–12 h
- Returns to baseline in 24 h
- every early, but not cardiac-specific : any Muscle injury in the body?

# 🖊 Other Labs:

- 4.  $\mathbf{CBC} \rightarrow \uparrow \mathbf{WBC}, \mathbf{ESR}$
- **Serum glucose**  $\rightarrow \uparrow$  even without DM = poor prognosis 5.
- Lipid profile  $\rightarrow$  Get within 24h of MI (otherwise inaccurate for weeks) 6.
- **ECHO**  $\rightarrow$  Wall motion abnormalities 7.

# II ECG Criteria for STEMI Diagnosis



> 3 points -> 98% probability of myocardial infan

ST-e

Sgarbossa ECG Criteria for LBBB

2 points

Discordant STE ≥5mm

# Significant ST Elevation (based on age, sex, and leads)

| Patient Group   | Leads       | ST Elevation Cutoff           |
|-----------------|-------------|-------------------------------|
| Men ≥ 40 years  | V2–V3       | ≥ 2 mm                        |
| Men < 40 years  | V2–V3       | ≥ 2.5 mm                      |
| Women (any age) | V2–V3       | ≥ 1.5 mm                      |
| All patients    | Other leads | ≥ 1 mm in ≥2 contiguous leads |

"Contiguous" = leads looking at the same area: E.g., II + III + aVF = inferior; V1–V4 = anterior

#### Sgarbossa Criteria for Diagnosing STEMI in LBBB

LBBB makes STEMI diagnosis tricky — these help you rescue MIs that hide behind LBBB

| Criterion                     | ECG Finding                       | Score             |          |
|-------------------------------|-----------------------------------|-------------------|----------|
| 1. Concordant ST Elevation    | ≥ 1 mm in leads with upright QRS  | 5                 | (        |
| 2. Concordant ST Depression   | ≥ 1 mm in V1–V3                   | 3                 | <b>V</b> |
| 3. Excessively Discordant STE | ≥ 5 mm in leads with downward QRS | 2                 |          |
|                               |                                   | Saarbassa oritari | -        |

STEMI likely if score ≥3 Sensitivity = 98% Score of 0 does not rule out STEMI

#### Non-MI Causes of Elevated Troponin

- Tachycardia
- ΡE Cardiac surgery
- Myonecrosis in heart failure
- Myocarditis
- Renal failure
- Shock
- Sepsis
- Always interpret troponin in context!

#### F Immediate Management of ACS: MONA

| Step | Intervention                                                         | Rationale                                                  |
|------|----------------------------------------------------------------------|------------------------------------------------------------|
| A    | Morphine                                                             | Analgesic; $\downarrow$ sympathetic tone ( $ m I$ avoid    |
|      |                                                                      | in hypotension/RV MI/resp depression)                      |
| В    | Oxygen (2–4 L/min)                                                   | Only if O <sub>2</sub> sat <90% or hypoxemic               |
| С    | Nitrates Vasodilate $\rightarrow \uparrow$ perfusion, $\downarrow$ p |                                                            |
|      |                                                                      | ( contraindicated in hypotension/RV                        |
|      |                                                                      | infarct)                                                   |
| D    | Aspirin 325 mg                                                       | Irreversibly blocks platelet activation via                |
|      |                                                                      | COX-1 $\rightarrow \downarrow$ thrombus, stabilizes plaque |

#### Clinical Pearls:

- Time = muscle Every 30 min delay =  $\uparrow$  1-year mortality by 8%
- **PCI (balloon angioplasty)**  $\downarrow$  mortality/morbidity more than meds  $\rightarrow$  should be done within 90 min

#### Revascularization: PCI vs Thrombolysis vs CABG

# PCI (Percutaneous Coronary Intervention)

#### Preferred treatment if door-to-balloon time <90 min

- Also preferred if:
- Contraindications to thrombolysis
- High risk of bleeding (e.g., intracranial hemorrhage risk)
- Reduces:
- Mortality more than thrombolytics
- **Recurrent thrombosis**
- If available, PCI is always better than thrombolysis (when feasible)

#### Thrombolytic Therapy

- Useful if:
- PCI is not available
- Patient presents late
- Best within first 6 hours, but can be given up to 24h (benefit declines with time)
- Risk: higher chance of re-thrombosis

#### 📌 Indications for Thrombolysis

- ST Elevation MI in 2 contiguous leads: 1.
- ≥1 mm in limb leads
- ≥2 mm in precordial leads
- New or presumed new LBBB 2.
- A Can only give thrombolytics if one of the two above is present

#### X Contraindications to Thrombolysis

| Absolute                           | 🕂 Relative                                       |
|------------------------------------|--------------------------------------------------|
| Active internal bleeding           | Trauma/surgery >2 wks                            |
| Suspected aortic dissection        | Active peptic ulcer                              |
| History of hemorrhagic stroke      | History of ischemic stroke                       |
| Recent major brain/spine trauma    | Current anticoagulant use                        |
| Severe uncontrolled HTN (>220/120) | Diabetic retinopathy, pregnancy, known allergies |

#### / Thrombolytic Drug Dosing Table

| Drug               | Dosage & Notes                                                               | Co-Therapy         |
|--------------------|------------------------------------------------------------------------------|--------------------|
| Streptokinase      | 1.5 million U over 30–60 min                                                 | None or IV heparin |
| Alteplase (tPA)    | 15 mg bolus $\rightarrow$ 0.75 mg/kg over 30 min, then 0.5 mg/kg over 60 min | IV heparin 24–48 h |
| Reteplase (rPA)    | 10 U + 10 U IV bolus (30 min apart)                                          | IV heparin         |
| Tenecteplase (TNK) | Single IV bolus (30–50 mg, weight-<br>based)                                 | IV heparin         |

🐥 Thrombolytics must be **combined with aspirin** (unless contraindicated)

#### Complications of STEMI

#### 1. Arrhythmias

Atrial

(Most common complication — due to ischemia or infarcted conduction system)

# P Nost common cause of death in pre-hospitalized

Examples Туре Ventricular PVCs, VT, VF ( sudden death risk) Atrial fibrillation (seen in ~15% within 24 hrs) Heart blocks 1st, 2nd, and 3rd degree AV block (esp. inferior MI)

🧠 Always check for bradyarrhythmia in inferior MI — may need pacing

# 2. Pump Failure (Heart Failure) - Nost common cause of deth in hospitalized patients → Graded by Killip Classification

| Killip Class | Finding                   | Interpretation               |
|--------------|---------------------------|------------------------------|
| 1            | No signs of HF            | Best prognosis               |
| II           | Mild pulmonary congestion | Crackles, S3                 |
| III          | Pulmonary edema           | Rales + respiratory distress |
| IV           | Cardiogenic shock         | Hypotension + hypoperfusion  |

Killip class > I is a strong predictor of mortality

| PCI (IS) thrembolytics (How to choose)? |                             |  |
|-----------------------------------------|-----------------------------|--|
| par - 0                                 | thrombolyEics               |  |
| () Door-ballon time is                  | () PCI unavailable or       |  |
| >90 min                                 | door - Ibaillon trime >90   |  |
| (2) Reduction of recorrent              | (3) STEMI Starbed ≺3h       |  |
| Hnombus                                 | 3 No contraindications      |  |
| (3) restoring TIME 3 flow               | (l) Door to needle          |  |
| in 98%                                  | fime T30 min                |  |
| * Note: point 2+3 makes                 | > time from arrival to      |  |
| PCT Superior                            | FR be time of thrombolytics |  |

#### 🐌 Limibations of thrombolytics 🕯

[] less effective in TIMI 3 ( full restortion of blood flow) ③ 80-30% fail to reperfuse ( 24 Montality) 3 5-82 reacclusion ( 3\* morbality ) (4) 10% die within 1 month after discharge (S) Another heart attack with 6 years in 18% men and 36% women

# **COMPLICATION OF THROMBOLYTIC** THERAPY 1-Hemorrhage <5% 2-Systemic embolization

- 3-CNS bleeding

4-Allergic Reaction 1-3%, anaphylaxis 0.1%

### 3. Mechanical Complications

Typically occur within first 10 days after MI

| Complication                     | Result                                            |
|----------------------------------|---------------------------------------------------|
| Free wall rupture                | Hemopericardium → tamponade (sudden death)        |
| Ventricular septal rupture (VSR) | New harsh systolic murmur + biventricular failure |
| Papillary muscle rupture         | Severe mitral regurgitation (acute HF)            |

New murmur post-MI = suspect VSR or MR until proven otherwise

### 4. Pericarditis (Post-MI)

| Туре                       | Timing    | Treatment                                   |
|----------------------------|-----------|---------------------------------------------|
| Early                      | 2–4 days  | Aspirin                                     |
| Late (Dressler's Syndrome) | 1–8 weeks | Autoimmune → also treat with <b>aspirin</b> |

Avoid NSAIDs and steroids early post-MI — they impair scar healing and ↑ risk of rupture.

# 5. Left Ventricular Aneurysm

- Forms when infarcted wall stretches
- Can lead to:
- Arrhythmias
- Thrombus formation  $\rightarrow$  embolic stroke
- CHF
- Often seen as persistent ST elevation weeks later

### 6. Recurrent MI / Extension

- Especially if initial thrombus wasn't fully treated
- May be silent if on analgesia or elderly

#### 💎 7. Sudden Death

- Most common cause: ventricular fibrillation
- Often occurs within first 1–2 hours

### **W** Differential Diagnosis of Chest Pain & MI-Like Conditions

# 1. Differential Diagnoses of Chest Pain

These are non-cardiac or non-MI causes that can mimic angina or STEMI:

| System           | Examples                                |
|------------------|-----------------------------------------|
| Neuromuscular    | Cervical radiculopathy, costochondritis |
| Respiratory      | PE, pneumothorax, pleuritis             |
| Gastrointestinal | GERD, esophageal spasm, PUD             |
| Psychiatric      | Anxiety, panic attacks                  |
| Cardiac (non-MI) | Syndrome X, aortic dissection           |

Clinical tip:

- Sharp, pleuritic, positional, or reproducible pain = non-ischemic
- MI pain is dull, heavy, and not affected by movement or breathing

| TIMI                                                                                  | Risk Score C              | the higher the worse' |
|---------------------------------------------------------------------------------------|---------------------------|-----------------------|
| Risk factor<br>1- Age>65<br>2- Age>75<br>3- Hist of angina<br>4- Hist of hypertension | Score<br>2<br>3<br>1<br>1 | 0                     |
| 5- Hist of DM                                                                         | 1                         |                       |
| 6- Syst BP< 100                                                                       | 3                         |                       |
| 7- Heart rate> 100                                                                    | 2                         |                       |
| 8- Killip II-IV                                                                       | 2                         |                       |
| 9- Ant M or LBBB                                                                      | 1                         |                       |
| 10- Dolay troat > 4 hr                                                                | 1                         |                       |



| * What is TIMI Score? flow                                                                                          | grading assessing how well      |
|---------------------------------------------------------------------------------------------------------------------|---------------------------------|
| blood is perfused after treatement                                                                                  | 0 0 0                           |
| TIMI (Thrombolysis in Myocardial Infarction) grading system assesses how well blood is restored after<br>treatment: | TIME 3 is achieved at           |
| TIMI 0 (Occlusion): Complete blockage; no blood flow.                                                               | Information Subaran in the test |
| TIMI 1 (Penetration): Blood starts penetrating the blockage but doesn creach the distal vessel.                     | airfectent ouccess rates by .   |
| • TIMI 2 (Slow Flow): Blood reaches the distal artery but flows sluggishly.                                         |                                 |
| TIMI 3 (Normal Flow): Full restoration of normal blood flow.                                                        | () PCI 98% (2) IMH SU/          |
| Why TIMI 3 Matters?                                                                                                 | X (3) Streptokinger: 221        |
| TIMI 3 flow is the goal of reperfusion therapy because it is associated with lower mortality and                    |                                 |
| better heart recovery.                                                                                              |                                 |

% Invasive Management & Reinfarction Detection

#### 1. Timing of Intervention

"PCI (angioplasty) must be done within 90 minutes (door-to-balloon time)."

If unavailable  $\rightarrow$  **Give thrombolytics** if within 12h, ideally  $\leq$ 6h

Clinical rule:

| Time from symptoms | Best Treatment                        |
|--------------------|---------------------------------------|
| ≤90 min            | PCI                                   |
| >90 min, <12h      | Thrombolysis (unless contraindicated) |

#### 2. When to Choose CABG Over PCI

### Indications for CABG:

- 1. Left main disease
- 2. **Triple-vessel disease**, especially with  $\downarrow$  EF
- 3. Failure of PCI
- 4. Severe proximal LAD involvement
- 5. Diabetic patients with complex anatomy

Scale of the second sec

#### 3. Signs of Reinfarction or MI Extension

| Sign                                                                                                      | Interpretation                                    |
|-----------------------------------------------------------------------------------------------------------|---------------------------------------------------|
| Recurrent chest pain                                                                                      | Consider reinfarction                             |
| New ST elevation                                                                                          | Extension or new MI                               |
| New wall motion defect on ECHO                                                                            | Indicates additional ischemic damage              |
| Re-rise of CK-MB                                                                                          | B <mark>est marker for <b>reinfarction</b></mark> |
| <b>Troponin</b> stays elevated for 10–14 days $\rightarrow$ not useful in early detection of reinfarction |                                                   |

# 14. When to Suspect MI Extension or Failure of Treatment

- Ongoing angina despite nitrates + morphine
- Persistent ST elevation
- Hypotension, S3 gallop, pulmonary congestion
- Arrhythmias (esp. VF/VT)
- No enzyme fall after 48–72h
- LVEF declining or newly akinetic area on ECHO

lpha If your patient is not improving after thrombolytics — assume treatment failure or extension!

# 𝔐 ACS Cheat Sheet — Lecture 2

#### **V**1. Core Pathophysiology

| Туре   | Description                         | Flow         | Troponin | ECG                           |
|--------|-------------------------------------|--------------|----------|-------------------------------|
| UA     | Plaque rupture, no necrosis         | $\downarrow$ | ×        | ST depression, T $\downarrow$ |
| NSTEMI | Subendocardial necrosis             | $\downarrow$ |          | ST depression, T $\downarrow$ |
| STEMI  | Transmural necrosis, full occlusion | ×            |          | ST elevation ± Q wave         |

ACS = thrombus-related occlusion (not supply/demand mismatch like stable angina)

### 2. Cardiac Markers

| Marker       | Rise | Peak   | Duration   | Use                    |
|--------------|------|--------|------------|------------------------|
| Troponin I/T | 4–6h | 12–24h | 10–14 days | Best for diagnosis     |
| СК-МВ        | 4–6h | 18–24h | 2–3 days   | Best for reinfarction  |
| Myoglobin    | 1–2h | 6–12h  | <24h       | Early but non-specific |

# 📈 3. ECG Criteria for STEMI

| Group        | Leads                  | Cutoff   |
|--------------|------------------------|----------|
| Men ≥40      | V2–V3                  | ≥ 2 mm   |
| Men <40      | V2–V3                  | ≥ 2.5 mm |
| Women (any)  | V2–V3                  | ≥ 1.5 mm |
| All patients | Any 2 contiguous leads | ≥ 1 mm   |

# 🔺 4. Sgarbossa Criteria (LBBB + Suspected MI)

| Finding                  | Criteria                         | Points |
|--------------------------|----------------------------------|--------|
| ST elevation concordant  | ≥ 1 mm in lead with positive QRS | 5      |
| ST depression concordant | ≥ 1 mm in V1–V3                  | 3      |
| ST elevation discordant  | ≥ 5 mm in lead with negative QRS | 2      |

STEMI likely if total score ≥3

### 5. Immediate ACS Management (MONA)

| Step | Drug     | Notes                                |
|------|----------|--------------------------------------|
| м    | Morphine | For pain; avoid if hypotensive or RV |
|      |          | infarct                              |
| 0    | Oxygen   | Only if O <sub>2</sub> <90%          |
| N    | Nitrates | Avoid in hypotension or RV infarct   |
| Α    | Aspirin  | 325 mg — cornerstone antiplatelet    |

### 🖴 6. PCI vs Thrombolysis

| Factor            | PCI                              | Thrombolytics         |
|-------------------|----------------------------------|-----------------------|
| Preferred when    | Door-to-balloon <90 min          | PCI unavailable       |
| Mortality         | $\downarrow\downarrow\downarrow$ | $\checkmark$          |
| Reocclusion       | Low                              | Higher (up to 30%)    |
| Contraindications | Few                              | Many (bleeding risk!) |

# Thrombolytic Drugs & Doses

| Drug | Regimen                      |
|------|------------------------------|
| SK   | 1.5 million U over 30–60 min |
| tPA  | Bolus + infusion x 90 min    |
| rPA  | 10 U + 10 U bolus            |
| ТNК  | Weight-based single bolus    |

# × 7. Thrombolysis Contraindications

# Absolute:

- Active bleeding
- Suspected aortic dissection
- Hemorrhagic stroke hx
- Recent major trauma/brain/spinal surgery
- Uncontrolled HTN >220/120

#### A Relative:

- Recent trauma/surgery
- Active PUD
- Diabetic retinopathy
- Current anticoagulant use

### 8. Risk Stratification: TIMI Score

| Point for                     |  |  |
|-------------------------------|--|--|
| Age ≥ 65                      |  |  |
| ≥3 CAD risk factors           |  |  |
| Prior CAD with ≥50% stenosis  |  |  |
| Aspirin in last 7 days        |  |  |
| ST deviation                  |  |  |
| ≥2 anginal events in last 24h |  |  |
| Elevated markers              |  |  |
|                               |  |  |

Score  $\geq$ 3 = High risk  $\rightarrow$  cath indicated

# 9. Post-MI Complications

| System       | Complication                   | Timing       |
|--------------|--------------------------------|--------------|
| Electrical   | VT/VF, AV block                | Early hours  |
| Mechanical   | Septal rupture, MR, tamponade  | Day 3–7      |
| Inflammatory | Early pericarditis, Dressler's | Day 2–8 wks  |
| Failure      | Killip II–IV CHF               | First 48h    |
| Others       | LV aneurysm, recurrent MI      | Weeks–months |

# 10. How to Spot Reinfarction

| Clue                        | Why it matters           |
|-----------------------------|--------------------------|
| Recurring chest pain        | Suggests ischemia        |
| New ECG changes             | ST changes = new infarct |
| Re-rise in <b>CK-MB</b>     | Best lab marker          |
| New wall motion abnormality | Seen on ECHO             |