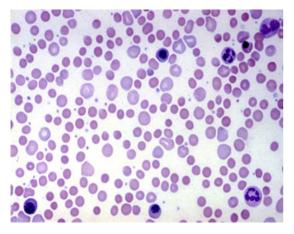
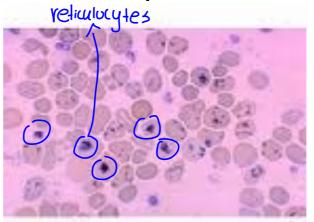
Anemia (3).ms 18.11.2020 Hemolytic Anemia

Abdallah Abbadi Feras Fararjeh

- hemolytic anemia: premature, early distruction of RB(3, 30 the bone marrow is not able to compensate with the Erythnocytes 1033
- Could be conginital or acquired

Case 3


24 yr old female presented with "anemia syndrome" and jaundice. She was found to have splenomegaly.


over <u>-</u> production

Hb 8, wbc 12k, Plt 212k, <u>retics© 12%</u>, LDH 1400, <u>bilirubir</u> 7mg/dl,d 2.5mg/dl, <u>DAT +3</u>.Bld film spherocytes, polychromasia.

Bld film

Supravital stain(retics)

Case 3

CT Abdomen AbdominalUS BM aspirate

BM:erythroid hyperplasia with megaloblastoid changes

autoimmune hemolysis anemia

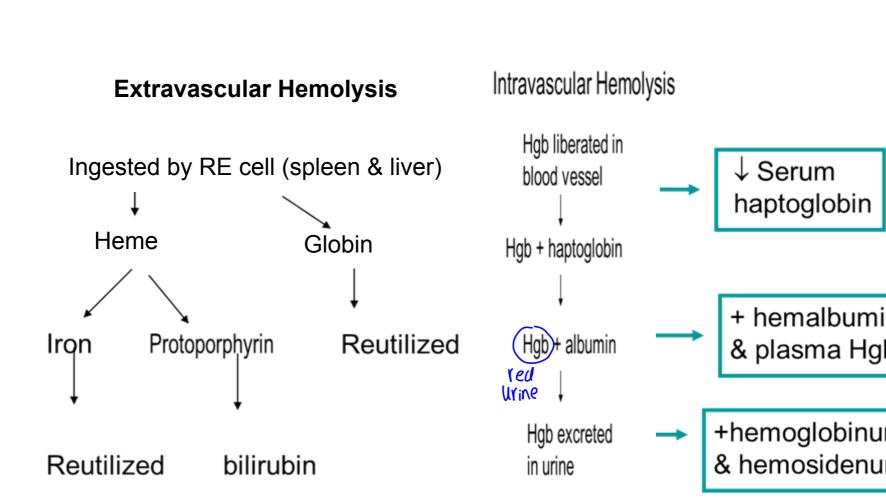
Diagnosis: AIHA. Treated with steroids + folic acid, complete response, but 9 months later had NHL.

Hemolysis= RBC destruction= Shortend RBC Survival with or without anemia

clussification types

Hemolytic Anemias –Classification

- By sites of red cell destruction: intra v
- extravascular


(l)

(B

(B)

3)

- Acquired (immune, Non-immune).
- **v congenital** (membrane: HS, Enzymopathies: G6PD def/PK, Hb-pathies: Thal, ss)
 - By mechanism of red cell damage:

Hemolysis

Evidence for increased red cell production • In the blood:

- Elevated reticulocyte count (corrected/RPI)
- Circulating NRBCs may be present
- In the bone marrow:
- erythroid hyperplasia
- reduced M/E (myeloid/ erythroid erythroid ratio)
- In the bone:

- Deforming changes in the skull and expansion long bones (" frontal bossing ")

General Clinical Features

- 1- Anemia syndrome
- 2- Spleenomegaly
- 3-gallstones. extravascular type
- 4- Dark urine (tea-colored or red)
- 5- Patients may have chronic ankle ulcers.
- 6- Aplastic crises associated with Parvovirus B19, may occur
- 7- Increased requirement for folate

Gallbladder stones/ biliary/ pigment stones

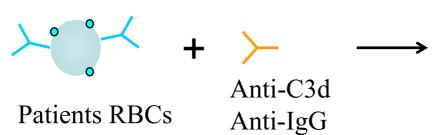
Parvovirus B19

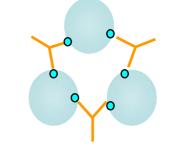
- Non-encapsulated DNA virus.
- Infects and lyses RBC precursors in marrow, causing 7-10d cessation of erythropoiesis.
- Normal individuals have no significant hematologic effect, since RBCs have normal life span.
- In pts with hemolytic anemias , loss of red cell production causes Aplastic Crisis

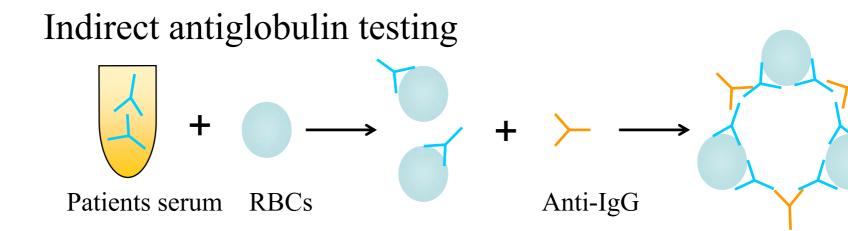
Autoimmune Hemolytic Anemia

- Warm antibodies (IgG-mediated)
 - Primary
 - Secondary to Viral or bacterial infections
 - Lymphoproliferative disease
 - Connective tissue disease
 - Infectious disease
 - Drug-induced
- Laboratory testing
 - Normocytic/macrocytic anemia
 - Peripheral smear spherocytosis

45% 40%


•mycoplusma pneumoniu •covid infection


15%


you applied agent have RBLs antibodies if the patient RBLs are could with antibodels ->interaction->ayylutination

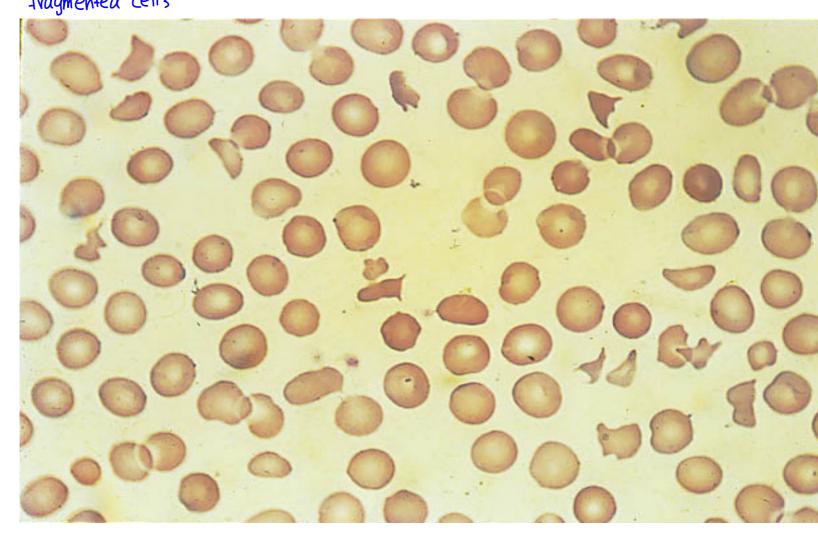
Anti-Globulin (Coombs) Testing

Direct antiglobulin testing(DAT)

Treatment of Autoimmune Hemolytic Anemia (Warm Antibody type)

- Treat underlying disease if indicated
- Prednisone (1 mg/kg/day for two weeks, then taper)
- Splenectomy ??
- Other
 - Immunosuppressive agents Corticosteroids are the
 - IVIG

Hemolytic Anemia with Intravascular Hemolysis

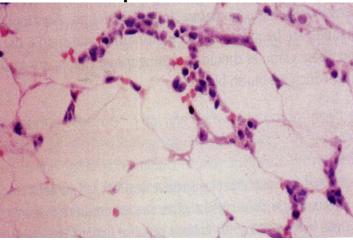

- Mechanical damage (Microangiopathic hemolytic anemia)

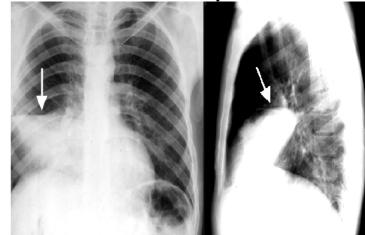
 Prostathic heart values
 - Chemical damage (Burns) inhulidion injurys or sever hurns
 - Infection (Malaria or Babesiosis)
 - Transfusion reaction (ABO incompatibility)

Differential Diagnosis of Microangiopathic Hemolytic Anemia

- Thrombotic thrombocytopenic purpura (TTP) is adjusted by shistolytes
 - Hemolytic uremic syndrome (HUS)
 - Disseminated intravascular coagulation (DIC)
 - Vasculitis
 - Malignant hypertension
 - Metastatic neoplasm with vascular invasion
 - Preeclampsia/HELLP syndrome of pregnancy

Schistocytes: Microangiopathic Hemolytic Anem


Aplustic unemin because of BM fuliure


Case 3 B

19 yr old male presented with "anemia syndrome", fever and easy bruising. No splenomegaly Hb 6 g/dl,WBC 1500 : N10%, L 80%, others 10%. Retics© 0,001%.MCV 105fl,Plt 20k.

BM/ Trephine

APLASTIC ANEMIA

Could be acquired or idiopatheic

- Aplastic anemia is a severe, life threatening syndrome in which production of erythrocytes, WBCs, and platelets has failed.
- Aplastic anemia may occur in all age groups and both genders.
- The disease is characterized by peripheral pancytopenia and accompanied by a hypocellular bone marrow.

APLASTIC ANEMIA

- The primary defect is a reduction in or depletion of hematopoietic precursor stem cells with decreased production of all cell lines
 - This may be due to quantitative or qualitative damage to the pluripotential stem cell.
 - In rare instances it is the result of abnormal hormonal stimulation of stem cell proliferation
 - or the result of a defective bone marrow microenvironment
 - or from cellular or humoral immunosuppression of hematopoiesis.

Causes of Bone Marrow Failure

Acquired

- -Idiopathic
- -PNH
- Secondary
- -Drugs
- -- radiation
- -Viruses

Inherited

- -Fanconi anemia
- -Diamond-Blackfan Anemia
- -Other rare conditions

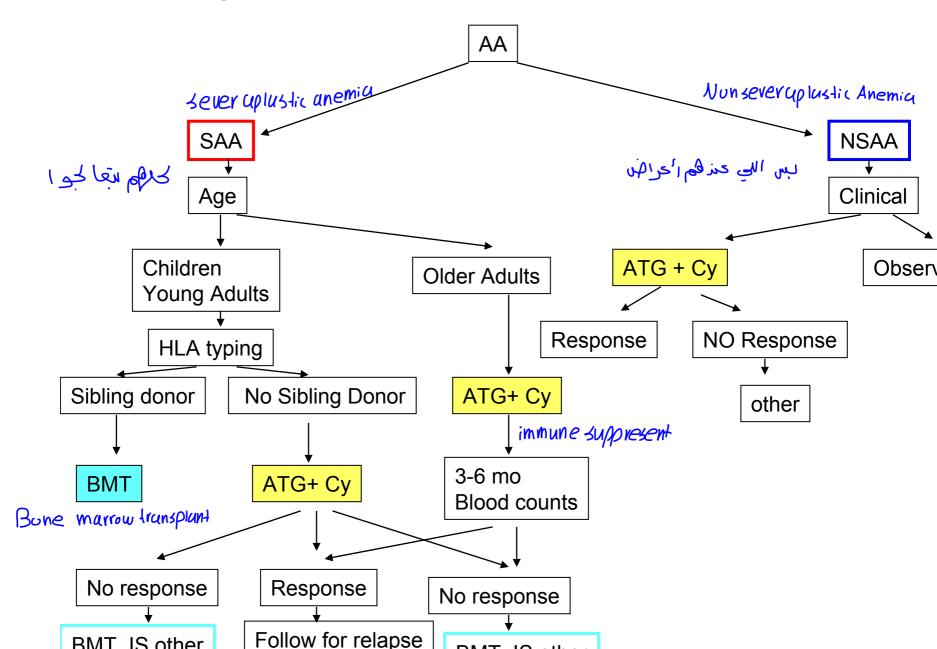
Clinical manifestations of AA

»Anemia syndrome

»Neutropenia syndrome

 »Thrombocytopenia syndrome
 »Combination of the above

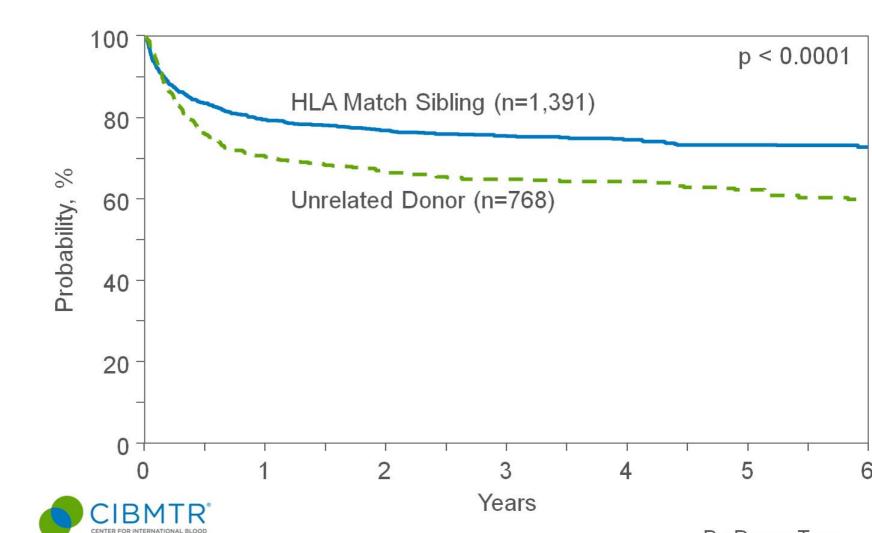
Symptoms Number of Patients Bleeding 41 Anemia 27 **Bleeding and anemia** 14 Bleeding and infection 6 Infection 5 Routine examination 8 101 Total


Presenting Symptoms of Aplastic Anemia

```
less plitts count higher age and more risk
of bleeding
```

Classification of aplastic anemia

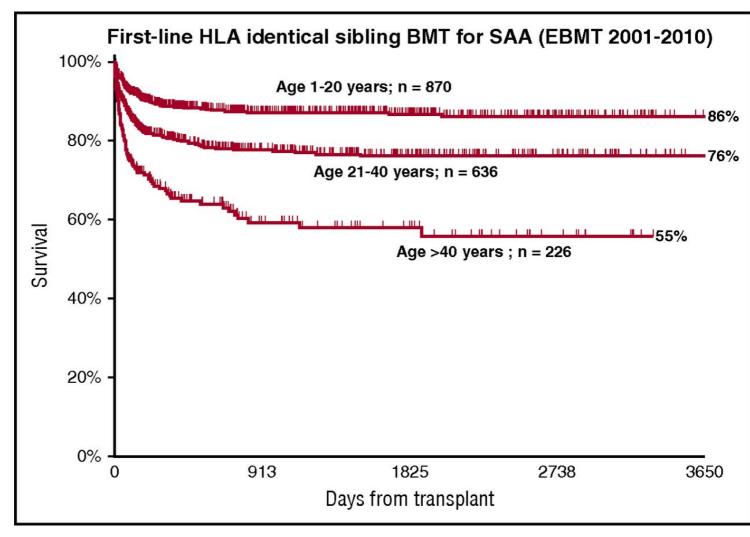
Classification	Criteria				
Severe	BM cellularity $<$ 25% (or $<$ 50% if $<$ 30% of BM is				
	hematopoietic cells)				
	$AND \ge 2$ of the following:				
	• Peripheral blood neutrophil count $< 0.5 imes 10^9/L$				
	 Peripheral blood platelet count < 20 × 10⁹/L 				
	 Peripheral blood reticulocyte count < 20 × 10⁹/L 				
Very severe	As above, but peripheral blood neutrophil count must be < 0.2 × 10 ⁹ /L				
Nonsevere	Hypocellullar BM with peripheral blood values not meeting criteria for severe aplastic anemia				


Treatment Algorithm for AA

Treatment of AA

- » Remove causative agent, if known
- » Supportive care **RBC** transfusions Treat infections prophylaxis **Treat Bleeding** » Bone marrow transplant » Immune suppression CSA ATG Combination of the above

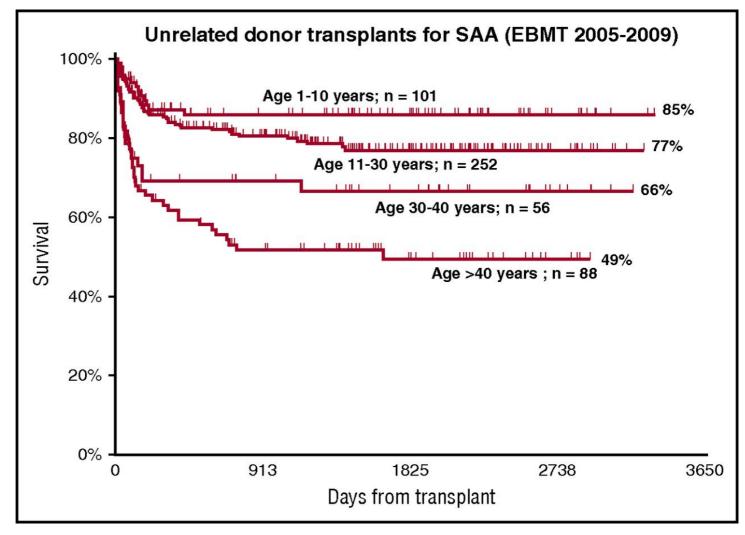
Survival after Allogeneic Transplants for Sever Aplastic Anemia, ≥ 20 Years, 2002-2012



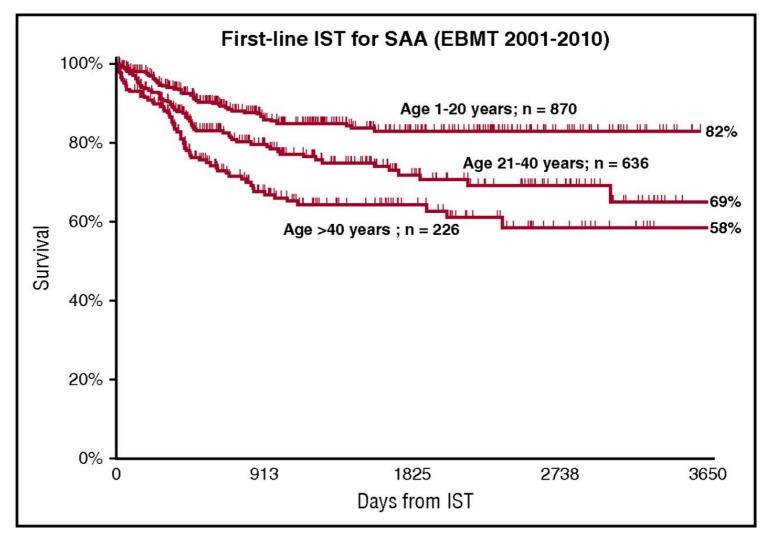
Skip this

Immunosuppression for AA

Table 1. Intensive immunosuppression (ATG plus cyclosporine) for severe aplastic anemia							
Study	N	Median Age	Response	Relapse	Clonal	Survival	
		(years)			Evolution		
German ¹⁰⁸	84	32	65%	19%	8%	58% at 11 yrs	
EGMBT ⁷¹	100	16	77%	12%	11%	87% at 5 yrs	
NIH ⁷⁰	122	35	61%	35%	11%	55% at 7 yrs	
Japan ^{*72}	119	9	68%	22%	6%	88% at 3 yrs	
NIH* ⁸¹	104	30	62%	37%	9%	80% at 4 yrs	


A strong age effect in patients with aplastic anemia, after transplantation from an HLA identi sibling.

Andrea Bacigalupo Blood 2017;129:1428-1436


The age effect in UD transplants: best outcome is seen for very young patients, for whom first UD BMT may be considered.

Andrea Bacigalupo Blood 2017;129:1428-1436

The age effect in patients receiving first-line IST. Data from the EBMT registry.

Andrea Bacigalupo Blood 2017;129:1428-1436

RELATED DISORDERS

- Disorders in which there is peripheral pancytopenia, but the bone marrow is normocellular, hypercellular, or infiltrated with abnormal cellular elements (Myelopthesic anemia)
- replacement of bone marrow by fibrotic, granulomatous, or neoplastic cells
- 2- Pure red Cell aplasia
- 3- Myelodysplastic syndrome (MDS)