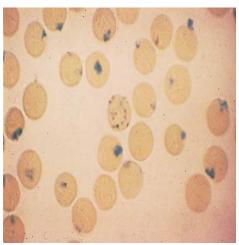
Congenital Hemolytic Anemias

Fourth year Medical Students

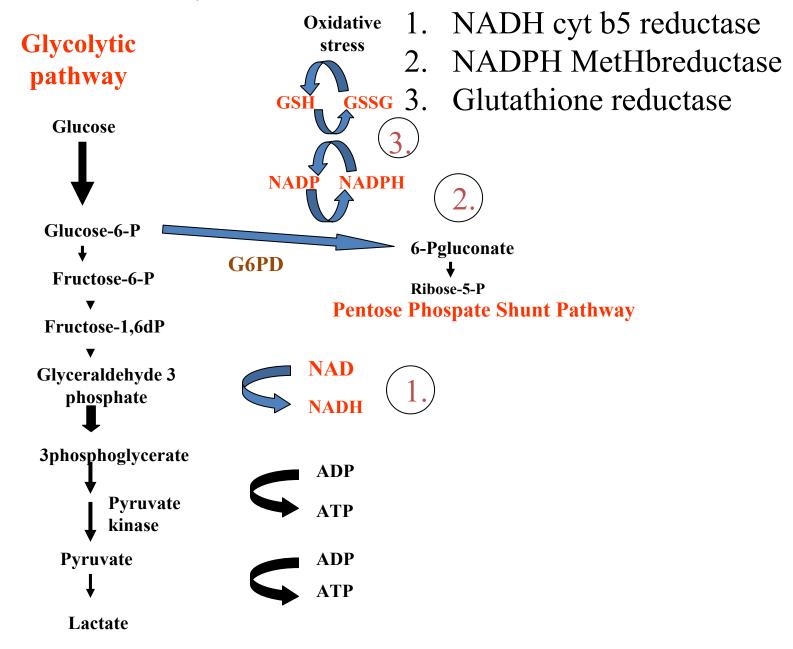
Feras M Fararjeh, MD

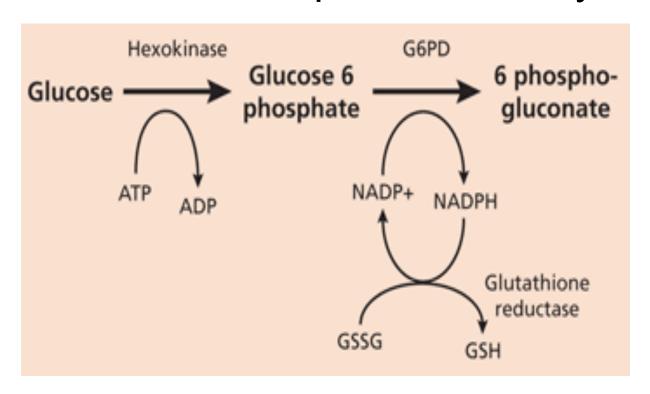
Congenital Hemolytic Anemias: Subtypes

- 1- Membrane defects: HS
- 2- Enzymopathies: G6PD Deficiency, PK Def
- 3- Hemoglobinopathies: B-Thal, SS

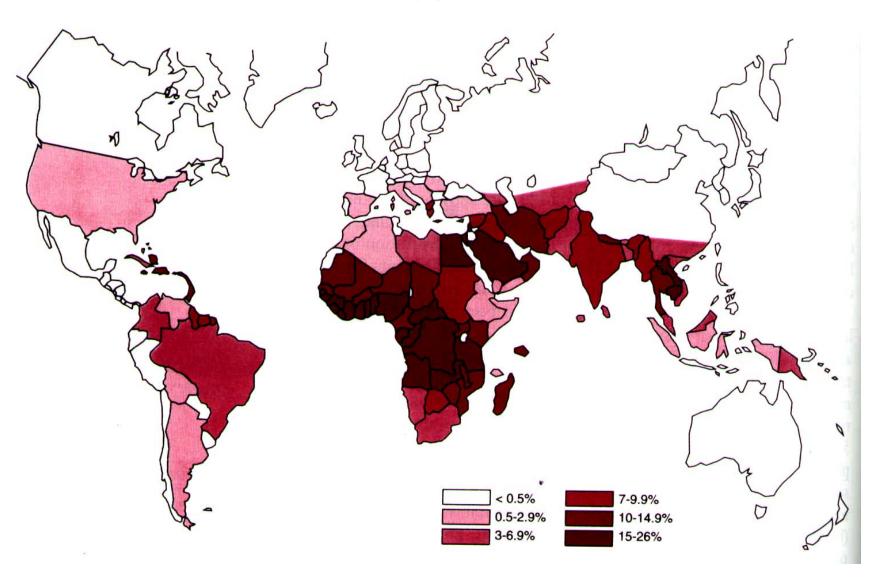

Anemia (4): Congenital Hemolytic Anemias Case 4

18 yr old male presented to ER with headches, dizziness, red urine and severe loin pain few hours after he ate fresh"fool" beans. He looked jaundiced and sweaty. His BP 90/60, Pulse rate 120.He had no splenomegaly. Hb 9 g/dl, WBC 16K, Plt 280K. Retics 9%.LDH 3000, Bilirubin 5 mostly indirect.


Urine Bite cells (Bld film) Heinz Bodies



Pathways of MetHb reduction:



Diagnosis of case 4: G6PD deficiency: hemolytic anemia induced by fava(broad) beans (Favism)

Pentose Phosphate Pathway

Prevalence of G6PD: > 400 mill people/ Malaria belt

Clinical Features:

- Disease from completely asymptomatic to severe intravascular hemolysis upon exposure to oxidant stress.
- Common precipitating factors:
 - Drugs: Primaquine Methylene Blue Nalidixic
 acid sulpha drugs pyridium and other.
 - Infections
 - Diabetic ketoacidosis
 - Favism: hemolysis after exposure to Fava beans, occurs in Gd^{Med} variant

Clinical Syndromes: G6PD Deficiency

- 1- Neonatal Jaundice: severe/ Kernicterus /, 1-3 day after birth.
- 2- Favism: acute intravascular Hemolysis after exposure to broad bean (Vicia fava), the offending agent is divicine, it produces free Oxygen radicals on autoxidation.
- 3-Infection which promote the formation of H_2O_2 following oxygen burst in neutrophils and macrophage may result in hemolysis
- 4- Drug induced hemolysis

G6PD variants

Genotypes/Isoenzymes

G6PD B+: wild type, whites > blacks

G6PD A+: blacks > whites

G6PD A-: blacks with mild deficiency

G6PD Med: whites Mediterranean, Kurdish, severe def.

G6PD Canton: Thailand, Vietnam, Taiwan

WHO variants

WHO Variants

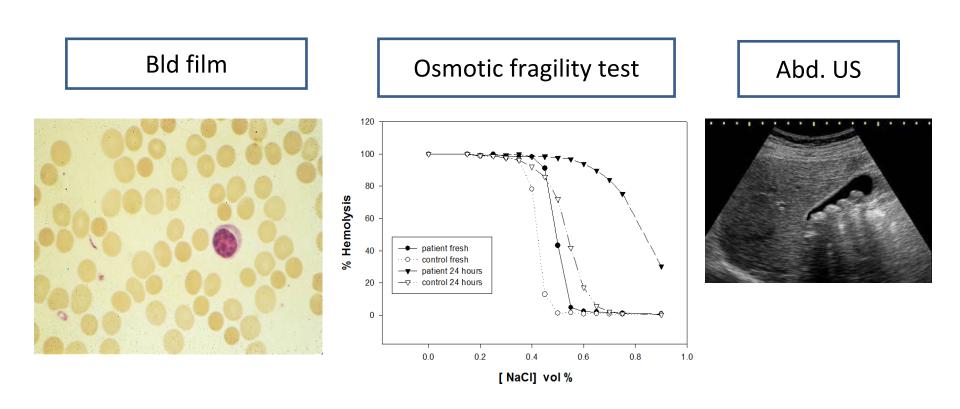
Class	Level of deficiency	Enzyme activity	Prevalence	
1	Severe	<10% enzyme activity Chronic nonspherocytic hemolytic anemia in the presence of normal erythrocyte function	Uncommon; occurs across populations	
II	Severe	<10% enzyme activity with intermittent hemolysis	Varies; more common in Asian and Mediterranean populations	
III	Moderate	10–60% enzyme activity Hemolysis with stressors only	10% of black males in the United States	
IV	Mild to none	60-150% enzyme activity No clinical sequelae	Rare	
V	None	>150% percent of normal No clinical sequelae	Rare	
G6PD - Glucose-6-phosphate dehydrogenase				

Drug-Induced Acute Hemolysis

- Drugs that have been linked to G6PD
- Primaquine
- <u>Sulphonamide antibiotics</u>
 <u>Sulphones</u> e.g. <u>dapsone</u> used against <u>leprosy</u>
- Other sulphur-containing drugs: <u>glibenclamide</u> (an <u>antidiabetic drug</u>
 <u>Nitrofurantoin</u>
- Vitamin K analogues
- Several others

Henna can cause a hemolytic crisis in G6PD deficient infants

Genetics

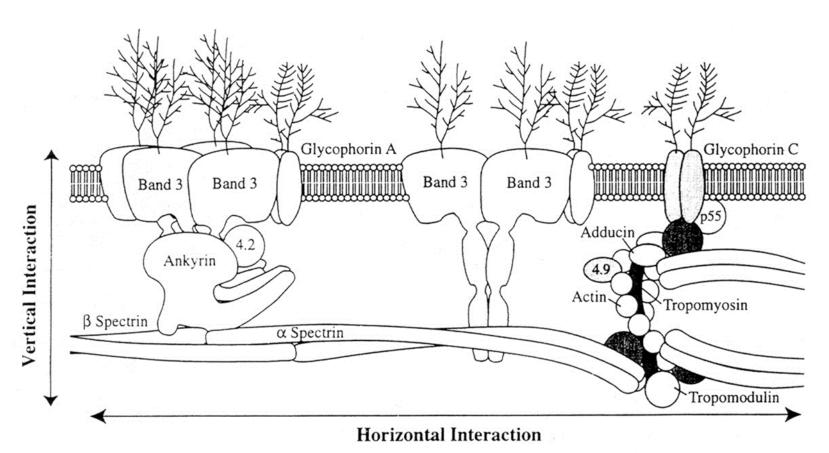

- Majority of the variants from a single pointmutation resulting in amino acid substitution in gene encoding for G6PD located at the Xq28 region on the tip of the long arm of the X- chromosome
- G6PD Mediterranean is caused by mutation (563 C-->T)

Therapy

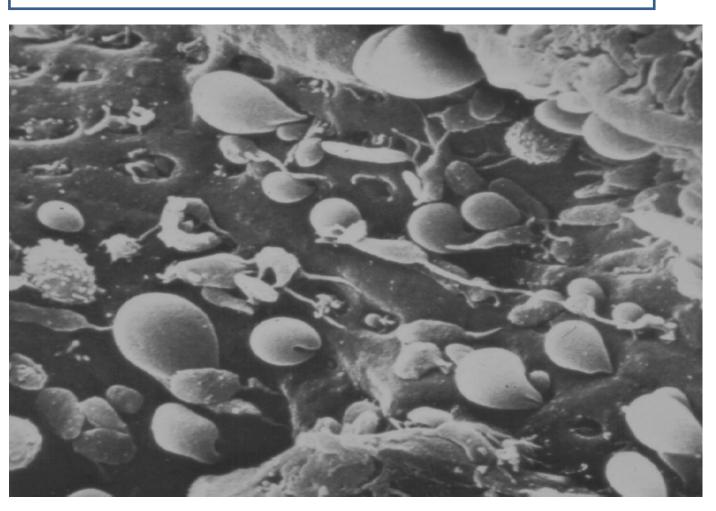
- Avoid precipitating factors.
- Blood transfusion in severe hemolysis.
- Maintenance of good urine output during hemolytic episodes
- Folic acid.
- Exchange transfusion in newborn

Case 4 B

36 yr old lady presented with "anemia syndrome" and splenomegaly. She was mildly jaundiced. Hb 8g/dl, retics 10%, WBC, Plt were normal. LDH 1160, Bilirubin 3mg/dl d 1.DAT –ve.


Hereditary Spherocytosis

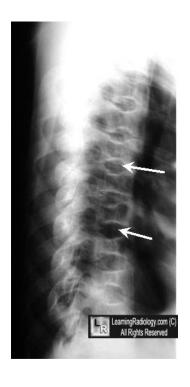
- Prevalence and inheritance
 - In Northern Europeans prevalence is about 1 in 5,000
 - Clinical severity is highly variable, but uniform within a given family
 - Typically the autosomal dominant homozygous is very severe or lethal
 - some recessively inherited
 - No consensus for splenectomy indications

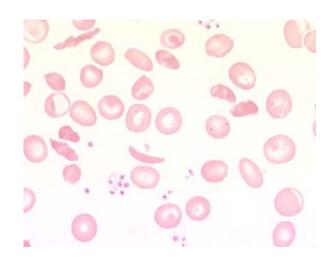

Hereditary Spherocytosis

- Molecular pathology
 - Partial deficiency of spectrin
 - Combined deficiency of spectrin and ankyrin
 - Molecular Defects:
 - mutations of ankyrin: most common
 - mutations of band 3 protein
 - mutations of protein 4.2 (common in Japanese)
 - Others: β & α spectrin, protein 4.9 are rare

RBC Membrane

Splenic Conditioning


Case 4 C


18 yr old male complains of acute pain in his back, Dizziness, Fatigue, Shortness of breath and Headaches for the last 6 hours. He has had similar attacks. P/E

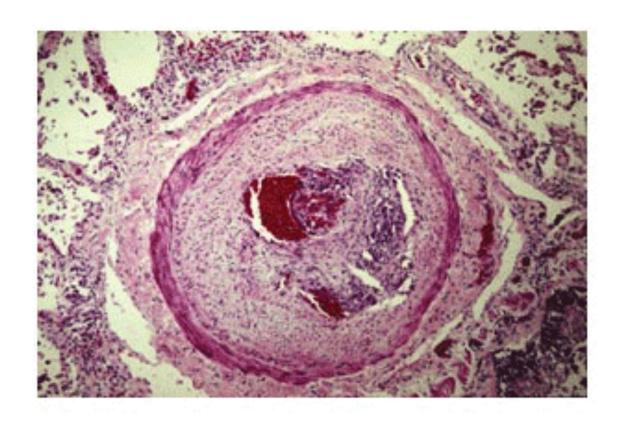
Xray spine

Sickle Cell Disease

- Inherited as autosomal recessive
- Point mutation in beta globin gene (β6 Glu → Val)
- Gene occurs in 8% of African-Americans

Peripheral Blood Smear

S-S Normal


Sickle Cell Anemia Clinical Effects

- Chronic hemolytic anemia
 - Gallstones (bilirubin)
 - Risk of red cell aplasia (Parvovirus)
 - Decreased vascular tone
- Susceptible to infection
 - Functional asplenia
 - Infarcted tissue
 - Numerous manipulations
- Vaso-occlusion

Vascular beds susceptible to injury

- Brain
- Lung
- Ankle
- Erectile vasculature of the penis

End-stage vascular lung disease

Infectious complications of Sickle cell anemia

- Related to absent spleen
 - Pneumococcus infections
 - Hemophilus infections
 - Dramatically improved with the use of prophylactic penicillin in childhood
- Related to frequent instrumentation
 - Staphyloccocal infections
- Related to tissue infarction
 - Osteomyelitis

Auto-splenectomy occurs in sickle cell disease

Sickle Cell Anemia Vaso-occlusion: Unique pathophysiologic feature

- Causes acute and chronic organ damage
- Acute complications
 - Sickle cell vaso-occlusive pain crisis
 - Hepatic crisis
 - Splenic crisis
 - Priapism
- Chronic organ damage
 - Stroke
 - Chronic lung disease with pulmonary hypertension
 - Renal failure
 - Avascular necrosis of bone

Sickle cell: avascular necrosis of the hip

Sickle cell vaso-occlusive crisis

- Serious complication of sickle cell anemia
- Risk of acute event (<48 hours)
 - Acute chest syndrome
 - Splenic sequestration
 - Massive hemolysis
 - Risk of sudden death

Sickle Cell Anemia Painful Events: Management Principles

- Correct fluid/electrolyte abnormalities; use hypotonic fluid and limit volume to avoid overhydration
- Treat any underlying illness
- Opioid analgesics (meperidine is not recommended)
- Blood transfusion is not indicated for an uncomplicated pain episode
- Incentive spirometry should be used during waking hours

Prevention of Painful Episodes

- Hydroxyurea increases Hgb F
 - Reduces the frequency of painful episodes, acute chest syndrome, RBC transfusions and hospitalizations
- Non-pharmacologic approaches have not been fully evaluated
- Prophylactic transfusions showed a decreased incidence of painful crisis in pregnancy

Sickle Cell Pain Episodes

- Average duration 5-7 days
- 30-50% of patients seen in ER are admitted
- Pain episodes account for ~90% of admissions
- Account for most of the cost of care

Addiction and pseudo-addiction

- Addiction (abuse)
 - Overwhelming involvement with obtaining and using mind-altering drug
- Pseudo-addiction
 - Relief seeking behavior misidentified as addictive behavior

Acute Chest Syndrome: Clinical Findings

- Etiology multifactorial
 - Rib infarct causing splinting/atelectasis
 - Pulmonary fat embolism
 - Infection (mycoplasma, chlamydia, viral)
- Indistinguishable from pneumonia
 - Pleuritic chest pain, fever, cough, tachypnea, hypoxia
- Laboratory diagnosis
 - Worsening anemia
 - Infiltrate on chest radiograph

Acute Chest Syndrome: Outcome

Complete recovery

91%

Weaned of supplemental O₂
 3.1±1.9 days

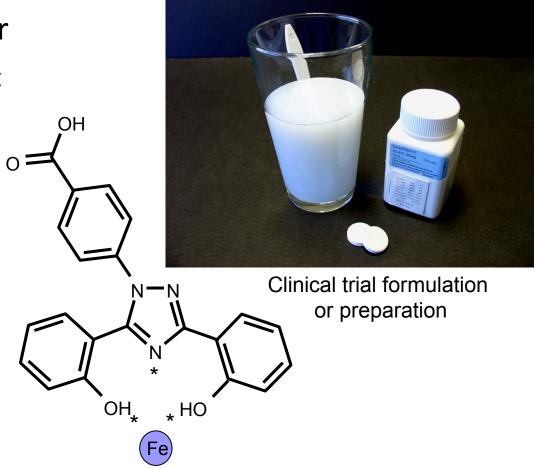
Hospital discharge5.4±2.3 days

 Chronic respiratory disease 3%

Death

6%

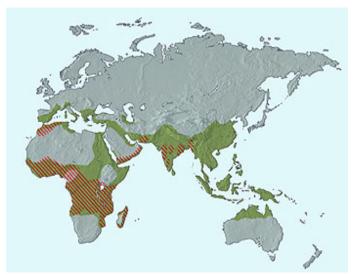
Acute Chest Syndrome: Prevention and Treatment


- Incentive spirometry
- Treat possible underlying infection
- Bronchodilators and supplemental oxygen
- RBC transfusion therapy

Indications for RBC transfusions in sickle cell disease

Indication	Outcome
Stroke	Initial recovery;
000/	decreased recurrence by
90%	
Acute chest syndrome improvement	Rapid
Aplastic crisis	May be life saving
Pre-operative treatment (Hgb ~10 g/dl)	Decrease post-operative complications
Symptomatic anemia	Clinical improvement
Splenic or hepatic sequestration	Clinical improvement

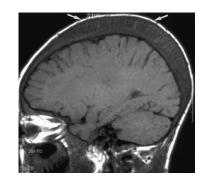
Deferasirox: Oral Iron Chelator in chronic blood transfusion


- Tridentate* iron chelator
 - An oral, dispersible tablet
 - Administered once daily
 - Highly specific for iron
- Chelated iron excreted mainly in feces (< 10% in urine)

^{*3} polar interaction sites in the binding pocket. Nick H, *Current Medicinal Chemistry*. 2003;10:1065-1076.

Sickle Cell Trait

- Protection against malaria
- Genitourinary complications
 - Hyposthenuria/ papillary sloughing
 - Painless hematuria
 - UTI during pregnancy
- Vaso-occlusive complications
 - Splenic infarction with hypoxia
 - Sudden death
 - Rhabdomyolysis



Sickle cell trait areas shown in orange stripes

Case 4 D

13 yr old male complains of skin pigmentation, abdominal swelling and pallor. He has been receiving blood transfusions since the age of 9 months. Stunted growth. Hb 6, MCV 55, retcs16%,s.Ferritin 5000.

P/E Xray

Clinical Syndrome Genotype Hb Hb analysis

Minor (Trait) β/β^{\dagger} or β/β° 10-13 \uparrow Hgb A2, \uparrow Hgb F

Intermedia $\beta^{\dagger}/\beta^{\dagger}$ 7-10 \uparrow Hgb A2, $\uparrow\uparrow$ Hgb F

Most commonly reported mutations in the B-globin gens in Jordanians

- Eight mutations constituted about 86% of the Jordanian thalassemic mutations
- These mutations were IVS1-110 (G>A) (25%), IVS2-1 (G>A) (15%),
- IVS2-745 (C>G) (14.2%), IVS1-1 (G>A) (10%), IVS1-6 (T>C) (8.3%), codon 37 (G>A) (6.3%),
- codon 39 (C>T) (4.6%), and codon 5 (-C) (3.8%)

Type of Mutation and severity of defect in B-Thal globin gene

Mutation	Phenotype Ethnic Origin	1
Promoter Region Mutan	its	
-101 (C to T)	B(+)	Turkish
-88 (Ĉ to A)	B(+) B(+)	Mediterranean
-87 (C to G)	$\mathbf{B}(+)$	Black American
Chain Terminator Muta	nts	
Codon 1 (-1 bp)	B (0)	Chinese
Codon 6 (-1 bp)	$\mathbf{B}(0)$	Mediterranean
Codon $114(-2, +1 bp)$	B(+) French
Splice Junction Mutants	· ·	•
IVS-1, position 1 (G to A)	B (0)	Mediterranean
IVS-1, position 2 (T to G)	$\mathbf{B}(0)$	Indian, Chinese
New Splice Site		
IVS-1 110 (G to A)	B(+)	Mediterranean
RNA Cleavage Defect	, ,	
AATAAA to AACAAA		

Beta Thalassemia: Clinical Manifestations/complication

Osteoporosis

Extramedullary erythropoiesis/ tumor effect

Iron overload: skin, heart, liver, endocrine organs

Dilated cardiomyopathy secondary to severe anemia Growth and development delayed Large splenomegaly

Treatment/ Prevention of B thal major

- Blood Transfusion
- Iron chelation: deferroxamine (parenteral)
- ?splenectomy
- Allo-BMT
- Supportive
- Prevention

Oral deferasirox

