Hematology

New-2016

Edited by: Fareed Halteh

Anemia

- Anemia is defined as the reduction in one or more of the major RBC measurements: Hb, PCV or RBC count
- Anemia thresholds:
 - Women: 12
 - Men: 13
 - Pregnant: 11
- Causes of anemia:
 - o Decreased production
 - Blood loss
 - Hemolysis
- Any anemia history should include:
 - Bleeding history
 - Systemic illness
 - Dietary history
 - Family history
 - Surgical history
 - Drug history
- Anemia syndrome (due to tissue hypoxia)
 - Dizziness
 - o Fatigue
 - Shortness of breath
 - Headaches
 - Palpitations
- any exam of anemic patient should include:
 - \circ liver and spleen exam
 - o signs of systemic disease
- blood parameters:
 - $\circ \quad MCV = PCV / \# RBC \ 88 \pm 8$
 - \circ MCH = Hb/#RBC 28±2
 - MCHC MCH/MCV 34±2
- Corrected reticulocytes count: actual PCV/Normal PCV x reticulocyte correction factor
- Serum iron: amount of iron bound to transferrrin
- TIBC: amount needed to bind all transferrin
- Percent saturation: amount of transferrin bound to iron expressed as a percentage
- Ferritin: amount of iron in the stores

	Iron def. anemia	Anemia of chr. Dis.	thalassemia
MCV	Low	Normal/low	low
Serum iron	Low	low	Normal/high
TIBC	High	low	normal
% saturation	Low	low	Normal/high
Ferritin	Low	Normal/high	Normal/high

- Ferritin is one of the best markers of iron deficiency anemia
- RDW: RBC distribution width; it measure variation in RBC volume, it ranges from 11/5% to 14.5%
- Follow up for IDA:
 - CBC every 3 months
 - Ferritin every 3 months
 - Pathogenesis of anemia of chronic disease:
 - Decrease erythropoietin production
 - Suppression of erythroid progenitors
 - Blockade of reticulo-endothelial iron release
- Anemia is not a final diagnosis
- Hb electrophoresis does not give good results unless IDA is corrected
- Rule of 3:
 - \circ Hb x 3 = PCV
 - \circ #RBC x 3 = Hb
- Clues to macrocytic anemia:
 - Large beefy tongue
 - Associated autoimmune diseases such as vitilligo, TIDM, and autoimmune thyroid disease.
 - Neurological symptoms are more common with B12 deficiency (compared to folate deficiency)
 - Pernicious anemia is an autoimmune disease that is the end result of atrophic body gastritis
 - Positive parietal cell and intrinsic factor antibodies
 - The schilling test: test used to diagnose pernicious anemia
 - Causes of macrocytic anemia:
 - B12 deficiency
 - Folate deficiency
 - Chronic PPI use
 - Ileal disease or resection
 - Folate can correct B12 deficiency hematologically but not neurologically
 - o Complications: subacute combined degeneration of spinal cord
 - Treatment:
 - No blood transfusion
 - Vitamin B12 injection daily for 7 days then monthly for life

- Thyroid function and DM monitoring
- Response to treatment:
 - Megaloblastic changes disappear in 2 days
 - Fall of serum LDH in 2 days
 - Reticulocytosis in 3-4 days
 - Rise in Hb concentration in 10 days and normalization in 10 weeks
- o During early treatment, watch out for severe hypokalmia
- Myelodysplastic syndrome:
 - o a spectrum of heterogenous myeloid clonal disorders characterized by:
 - Ineffective hematopoeisis
 - Dysmorphic cells
 - Pancytopenia
 - Frequent progression to AML
 - \circ $\,$ Increase in MCV and splenomegaly: think of MOS $\,$
 - Peak incidence occurs at age 60
 - o 50% have cytogenic abnormality; most commonly deletion 5q
 - IPSS: international prognostic scoring system. It depends on:
 - % of BM blasts
 - Karyotype
 - Cytopenia
 - The lesser the IPSS score, the better the prognosis
 - Survival ranges between 6 months and 6 years.
 - WHO classification based prognostic scoring system (WPSS): here, transfusion requirement is added as a prognostic variable
 - Treatment:
 - Best supportive care including iron chelation
 - Hemopoetic growth factor
 - Immunomodulatory drugs
 - Chemotherapy
 - Stem cell therapy
- Hemolytic anemia:
 - Clues:
 - Jaundice
 - Increased LDH
 - Indirect bilirubenemia
 - Polycythemia
 - Supravital stain
 - Erythroid hyperplasia in bone marrow
 - o Spherocytosis:
 - Hereditary spherocytosis

- Autoimmune hemolytic anemia
- \circ If the RBC lifespan is >20 days, there will be no symptoms:
- It can be classified into:
 - Congenital:
 - Membrane defects such as hereditary spherocytosis
 - Enzymopathies in cases of G6PD and PK deficiencies
 - Hemoglobinpathies: thalassemia and sickle cell anemia
 - Acquired:
 - Immune mediated
 - Non-immune mediated
- A different classification:
 - Extravascular hemolysis: ingested by reticuloendothelial cells in the liver and spleen
 - Intravascular:
 - Very toxic metabolites
 - Decreased serum haptoglobin
 - Hemoglobinurea and hemosidenuria
- Consequences of hemolytic anemia:
 - Splenomegaly
 - Gallstones (small and multiple)
 - Dark urine
 - Increased folate requirement
 - Aplastic crisis due to parvovirus B19
- Warm autoimmune hemolytic anemia:
 - Causes extravascular hemolysis
 - IgG mediated
 - Positive Coomb's test
 - Etiology:
 - Primary: 45%
 - Secondary: 40%:
 - Lymphoproliferative disease
 - Connective tissue disease
 - Infections
 - Drugs (especially methyldopa)
 - MCV: normal to high
 - Treatment:
 - Prednisone 1mg/kg/day for two weeks then taper
 - Rituximab
 - IVIG
- Cold autoimmune hemolytic anemia:

- Rare
- Signs and symptoms exacerbated by cold
- IgM mediated
- Associated with mycoplasma infection
- Therapy is ineffective
- It is more severe than the warm type because it is intravascular.
- It is caused by:
 - Mechanical damage: microangiopathic hemolytic anemia
 - Chemical damage
 - Infection
 - Transfusion reaction
- Differential diagnosis of microangiopathic hemolytic anemia:
 - TTP
 - HUS
 - DIC
 - Pre-eclempsia/HELLP
 - Vasculitis
 - Malignant hypertension
- Congenital hemolytic anemias:
 - G6PD deficiency:
 - Ranges from asymptomatic to severe intravascular hemolysis
 - Triggers:
 - Drugs: primaquine, sulphamide antibiotics, sulfur containing drugs, Henna in infants.
 - Infections
 - Mediterranean and African (A⁻) are the most clinically significant
 - Enzyme activity is scarcely detectable in the Mediterranean type, but is normal in the African type
 - X=linked caused by single point mutations
 - G6PD Mediterranean is caused by 563 C \rightarrow T
 - If there is red urine, think of hemolysis
 - Hereditary spherocytosis:
 - Autosomal dominant
 - Clinical severity is highly variable
 - Presents with gallbladder stones
 - No consensus for splenectomy indications
 - Increased osmotic fragility
 - -ve DAT
 - Mutation in ankyrin

- Mutation in spectrin
- Sickle cell:
 - Autosomal recessive
 - Point mutation in beta globin gene (Glu \rightarrow Val)
 - Common in blacks
 - Hb electrophoresis confirms the diagnosis and distinguished between SS, AS, and other variants
 - Consequences:
 - Chronic hemolytic anemia
 - o Increased susceptibility to infections
 - o Vaso-occlusive crisis: most common complication
 - Organs susceptible to vascular injury:
 - o Lung
 - o Brain
 - o Ankle
 - o Penis
 - Crises:
 - Vaso-occlusive crisis
 - Aplastic crisis
 - Sequestration crisis
 - Predisposing factors:
 - o Hypoxia
 - o Cold
 - o Acidosis
 - o Stress
 - o Fever
 - Infection
 - Dehydration
 - 50% of vaso-occlusive pain occurs in the lumbar spine.
 - Management of painful events:
 - Use hypotonic fluid and limit volume to avoid overhydration
 - o Treat any underlying illness
 - Opioids (pethidine is not recommended)
 - Blood transfusion is indicated in uncomplicated pain episode
 - Prevention of pain episodes: Hydroxyurea: increases fetal hemoglobin. Side effects: leukopenia
 - Pain episodes last 5-7 days
 - Avascular necrosis of the hip occurs in 33%

- May have abnormal finger shape
- Acute chest syndrome:
 - Emergency
 - Can lead to death
 - Multifactorial: rib infarcts, pulmonary fat embolism, anf infection
 - o 6% mortality rate
 - Treatment:
 - Incentive spirometry
 - Treat possible infection
 - Bronchodilators and oxygen
 - RBC transfusion
- Indications for transfusion in sickle cell patients:
 - o Stroke
 - o Acute chest syndrome
 - Aplastic crisis preoperative treatment
 - Splenic sequestration
 - o Symptomatic anemia
- Thalssemia:
 - Beta thalassemia: chromosome 11
 - (B) → normal, (B⁺) → mutated with some activity, (B⁰) mutated with no activity
 - Features:
 - Bossing
 - Expansion of bone marrow
 - Hair on end sign
 - Stunted growth
 - Iron overload: heart, liver, endocrine gland, and skin
 - o Treatment:
 - Blood transfusions (more than sickle cell patients)
 - Iron chelation (deferroxamine, oral deferasirox)
 - Allo-bone marrow transplant (curative)
 - Diagnosis by Hb electrophoresis: increase HgA2
- Aplastic anemia:
 - Severe life threatening syndrome
 - Characterized by peripheral pancytopenia and accompanied hypocellular bone marrow
 - Etiology:
 - Acquired:
 - Idiopathic: most cases
 - Drugs: chloamphenicol

- Chemicals
- Infections: infectious mononucleosis
- Congenital:
 - Fanconi anemia
 - Familial aplastic anemia
- Features:
 - Anemia syndrome
 - Neutropenia syndrome
 - Thromboccytopenia sydrome
 - No splenomegaly
- Treatment:
 - Remove causative agent
 - Supportive:
 - Treat infections
 - Treat bleeding
 - Transfusion
 - Immune-suppressants
 - Bone marrow transplant in patients <50
 - Delay transfusion due to possible graft Vs host disease

Bleeding disorders

- Extrinsic pathway: tissue factor increases the activity of factor VII
- Intrinsic pathway: factor XII \rightarrow XI \rightarrow IX
- Common pathway: factor $X \rightarrow V \rightarrow II$ (thrombin)
- Factor XIII stabilizes fibrin
- Factor VII can be activated by factor IX
- Gamma carboxylase is dependent on vitamin L
- Warfarin blocks vitamin K dependent factors
- $PT \rightarrow$ extrinsic pathway
- PTT \rightarrow intrinsic pathway
- Thrombin time (TT) \rightarrow common pathway
- Hypocalcemia does not cause bleeding; very low levels of calcium are enough
- BT (bleeding time) VWD and thrombocytopenia
- Prolonged bleeding time does not predict excess surgical blood loss
- The most important thing before a surgery is a good history
- Hemophilia:

	Hemophilia A	Hemophilia B
Factor deficiency	VIII	IX
inheritance	X-linked recessive	X-linked recessive
Incidence in males	1/10,000	1/50,000
complications	Soft tissue bleeding and compartment syndrome	

- Clinically, they are the same
- Severity is related the factor level
- We administer factor 8 at a lower dose, it has a short t $\frac{1}{2}$
- We administer factor 9 at a higher dose, it has a long t $\frac{1}{2}$

Clinical features of bleeding disorders

Children features of bleeding disorders				
Disorder	Platelet	Coagulation factor		
Petichiae	yes	no		
Site of bleeding	Skin, mucus membranes	Deep in soft tissues		
Ecchymoses	Small, superficial	Large, deep		
Hemarthrosis	rare	common		
Bleeding after injury	yes	no		
Bleeding after surgery	Immediate, usually mild	Delayed, often severe		

- Coagulation factor disorders:
 - \circ Inherited:
 - Hemophilia A and B
 - VonWillebrand's disease (manifests as a platelet disorder)
 - Other factors deficiency
 - Acquired:
 - Liver disease

- Vitamin K deficiency or warfarin overdose
- DIC
- F8 gene on chromosome X
- F8 intron 22 inversion is responsible for 45% of cases of hemophilia A
- Severity is related to factor level
 - \circ <1%: severe spontaneous bleeding
 - 1-5%: moderate bleeding with mild injury
 - \circ 5-25% mild bleeding with surgery or trauma
- Management of hemophilia A
 - Treat acute attacks with factor replacement
 - o Analgesics
 - Evacuate for synovectomy (chemical, surgical)
 - Long term prophylaxis
 - Education, genetic counseling
 - Screen for inhibitor twice yearly since therapy is different
 - FVIII: recombinant or plasma derived
 - Complications of therapy (formation of inhibitors)
 - 10-15% of severe hemophilia A patients
 - 1-2% of hemophilia B patients
- VonWillebrand's disease:
 - o Labs:
 - Bleeding time: increased, normally below 10
 - PTT: increased
 - Factor VIIIc decreased, reduced because vWF is needed to carry it
 - vWFAg: decreased
 - INR: normal
 - Platelets: normal
 - Clot retraction: normal; used to exclude Glanzmann thromb.
 - vWFactor:
 - synthesized in endothelium and megakaryocytes
 - forms large multimer
 - carries factor VIII
 - anchors platelet to subendothelium
 - bridge between platelets
 - o vWD
 - autosomal dominant
 - incidence: 1/10,000
 - causes mucocutaneous bleeding, but may manifest like hemophilia A
 - o lifespan of factor VIII is reduced from 12-20 hours to <2 hours
 - o Types:

- Type 1: partial quantitative deficiency (most common)
- Type 2: qualitative
 - Type 2A
 - Type 2B:
 - Here only the large multimers are absent
 - Association with hyperaggregation. Here, we also have thrombocytopenia, so we cannot give DDAVP.
- Type 3: total quantitative deficiency

vWF assay	1	2	3
vWF antigen	decreased	normal	Decreased
vWF activity	decreased	decreased	Decreased0
Multimer analysis	normal	Normal/abnormal	Absent

- Acquired vonWillbrand syndromes:
 - Immune mediated
 - Proteoloysis
- Treatment:
 - Cryoprecipitate: fibrinogen, factor VIII, and vWF
 - DDAVP)vasopressin, antidiuretic hormone)
 - Stimulates vWF secretion from endothelium
 - Used for mild type 1
 - Factor VIII concentrate (Humate P): used for types 2 and 3
- DIC:
 - Mechanism is through systemic activation of coagulation which leads to:
 - Intravascular deposition of fibrin which leads to thrombosis of small vessels with organ failure
 - Depletion of platelets and coagulation factors which leads to bleeding
 - Circulatory thrombin is responsible for the consumption of all the factors
 - Increased PTT, PT, TT, and increased dimmers.
 - Increased fibrin degradation products
 - Schistocytes
 - o Decreased fibrinogen, decreased platelets, and increased BT
 - Triggers:
 - Sepsis
 - Trauma
 - Malignancy
 - Obstetric complications
 - Vascular disorders
 - Toxins

- Immunological disorders
- These triggers work by:
 - Release of tissue factor or thromboplastic substances into the circulation
 - Widespread injury to endothelial cells
- Treatment:
 - Treat the underlying cause
 - Platelet transfusion
 - Fresh frozen plasma
 - Coagulation inhibitor concentrate (antithrombin)
 - Anticoagulation with heparin
 - Monitor PT, PTT, DD, fibrinogen degradation products, and platelet count
- Thrombophilia workup:
 - Mutations: methylhydrofolate reductase (the most common)
 - Factors:
 - Factor V laden
 - Protein C, S
 - Antithrombin 3 (most severe)
 - Factor VIII
 - Antiphospholipid antibody
- Glanzmann throbasthenia
 - Defect of platelet aggregation
 - Life-long mucosal bleeding
 - Ovarian bleeding bleeding in closed spaces
 - Treatment is supportive (transfusion)
 - o Labs:
 - Normal platelet count and morphology
 - Prolonged bleeding time
 - Absent or impaired clot retraction
 - No aggregation with physiological aggregating agent (light doesn't pass through the plasma mixture). These agents include ADP, thrombin, and collagen
 - Absent or reduced GPIIb-IIIa
 - Normal PT, PTT, and TT
 - Common in Jordan
 - Autosomal recessive
 - no binding of fibrinogen

Platelet disorders

- Types:
 - Quantitative:
 - Abnormal districution
 - Dilution effect
 - Decreased production
 - Increased destruction
 - Qualitative:
 - Inherited:
 - Defects of platelet adhesion: Bernard Soulier disease, von Willbrand disease
 - Defects of platelet secretion
 - Defects of platelet aggregation (thrombastenia)
 - Acquired:
 - Medications (aspirin, NSAID's)
 - CKD
 - Cardiopulmonary bypass
- Platelet transfusion complications:
 - Transfusion reaction:
 - Higher than in RBC transfusions
 - Bacterial contamination
 - Platelet transfusion refractoriness:
 - Allo-immune
 - Non-immune:
 - Microangiopathic hemolytic anemia
 - Coagulopathy
 - Splenic sequestration
 - Fever and infection
 - Medications: vancomycin, interferons
- ITP (AKA ATP)
 - o Increased platelet destruction mediated by autoantibodies
 - Characterized by decreased production of platelets despite increased megakaryocytes in bone marrow
 - Treatment:
 - 50,000 platelet count is considered the safe cutoff value; therefore, treatment depends on platelet count:
 - > 50,000: no symptoms, no treatment
 - 50,000: if the patient is not bleeding, no treatment. If the patient is bleeding administer steroids, IVIG, or antiD

- <20,000: if the patient is not bleeding, administer steroids. If the patient is bleeding, administer steroids, IVIG, antiD and admit.
- Curative therapy:
 - Splenectomy
 - Rituximab
- Rescue therapy:
 - High dose steroids
 - IVIG or anti-D
- Chronic therapy: many agents including thrombopoeitin agonists
- Steroids increased platelet count by increased apoptotic death of autoantibody producing lymphocytes and down regulation of macrophage activity responsible for platelet destruction
- IVIG increases the platelets by overwhelming the reticuloendothelial system. It interferes with platelet destruction
- Anit-D: is an Ig directed against the D antigen of RH blood group system, it raises platelet count by saturation macrophage Fc receptor with anti-D coated RBC's
- Follow up for secondary causes of ITP such as SLE and lymphoproliverative neoplasms.
- If female, monitor during pregnancy and delivery. Make sure to provide adequate post-delivery care and avoid using forceps for delivery

• Flashback:

- Thrombocytopenia associated with shortened survival:
 - Immune mediated thrombocytopenia:
 - o ITP
 - o TTP
 - Heparin induced thrombocytopenia (HIT)
 - Drug induced thrombocytopenia
 - Non-immune destruction of platelets:
 - o DIC
 - o Sepsis
 - Multifactorial thrombocytopenia:
 - o Hospital associated
 - Cancer associated
- Thrombocytopenia:
 - Associated with bleeding:
 - ITP
 - Drug induced
 - Associated with thrombosis:
 - TTP

- DIC
- Trosseau's syndrome
- HIT
- Heparin induced thrombocytopenia:
 - Suspected in:
 - Normal platelet count prior to heparin with decline to <100,000 or reduction of platelet count by 50%
 - Onset of thrombocytopenia by day 14
 - Any new thrombotic event while on heparin
 - Skin inflammation or necrosis at heparin injection site
 - Exclusion of other causes of thrombocytopenia
 - Outcome in HIT patients:
 - New thrombosis in up to 50%
 - Amputation in 10%
 - Death in 10-20%
 - 6 principles of treatment in HIT:
 - 2 do's
 - Stop heparin
 - Start new anticoagulant: donnaparoid, lepirudin, or argatroban
 - 2 don't
 - No warfarin until substantial platelet count recovery
 - No platelet transfusion
 - 2 diagnostics:
 - Labs for HIT
 - Duplex for lower limb
- o TTP:
 - Pentad of findings:
 - Fever
 - Neurologic changes
 - Renal impairment
 - Thrombocytopenia (<20,000)
 - Microangiopathic hemolytic anemia (schistocytes), Hgb <10, and lab findings of hemolysis
 - Other findings:
 - Severe deficiency of ADAM-TS13
 - PT, PTT,TT are normal (unlike DIC)
 - MRI may show leukoencephalopathy or brain infarcts

- ADAM-TS13 is vWF protease; its deficiency causes ultra large multimer production which predisposes to thrombus formations
- Differential: HUS; however, in HUS ADAM-TS13 is normal
- Treatment:
 - Initial treatment: plasma exchange (plasmapheresis) daily
 - Relapse: plasmapheresis + rituximab (anti CD20)
 - Other treatment:
 - Vincristin
 - Splenectomy
 - Steroids
 - o Aspirin
 - Monitor LDH, platelets, clinical status, and ADAM-TS13
 - LDH correlates with disease activity
- Veno-thrombo embolism (VTE):
 - Causes:
 - Genetic
 - Environmental
 - Triggers
 - Risk factors:
 - Stasis
 - Hypercoagulability
 - Endothelial damage
 - Prophylaxis:
 - Pharmacological prophylaxis reduces DVT and PE by 50-65%
 - Bleeding risk is rare
 - HIT \rightarrow 2.4% with unfractionated heparin, 0.06% with LMWH
 - Prophylaxis reduces VTE's burden
 - Homozygous factor V laiden patients have a very high risk for developing VTE (20-30%)
 - Importance of VTE:
 - Preventable
 - Life-threatening
 - Long term complications
 - Common
 - Costly
 - The burden of VTE:
 - DVT:
 - 40% develop post thrombotic syndrome
 - 30% develop PE:

- 3% death
- 5% pulmonary hypertension
- Patients >45 years of age are at a greater risk for VTE
- Post DVT syndrome:
 - Pain (aching and cramping)
 - Heaviness
 - Itching
 - Swelling
 - Varicose veins
 - Brownish skin discoloration
 - Ulcers
- Treatment:
 - Unfractionated heparin
 - LMWH
 - Overlap of heparin and warfarin
- Other medications:
 - Thrombolytic therapy
 - Thrombectomy
 - IVC filter
 - Embolectomy
- Duration of treatment is individualized
- Heparin's side effects:
 - HIT (early and late)
 - Bleeding
 - Hypersensitivity
 - Osteoporosis
 - Increased thyroxin
 - Dermatologic (alopecia)
 - Metabolic (hypokalemia, hyponatremia, and hypertriglyceremia)
- Heparin's antidote: protamine sulfate
- LMWH antidote: factor X + fresh blood
- Warfarin:
 - Plasma concentration peaks 2-8 hours after oral dose
 - 99% bound to albumin
 - T 1/2: 25-60 hours
 - Inhibits vitamin K dependent factors: prothrombin, factor VII, IX, and X.
 - Inhibits protein C and S

- The 1st factors to decrease after warfarin administration are factor VII and protein C
- It takes 3-5 days for warfarin to start working; we usually bridge the patients using heparin
- Warfarin resistance (>20 mg per day with subtherapeutic INR)
 - Non-compliance
 - Lab errors
 - Excessive vitamin K intake
 - Mutations (rare)
- Warfarin sensitivity: (<2mg per day with high INR)
 - 15% of Caucasians
 - Cytocrome p450 polymorphism that decreases the rate of metabolism
- Side effects of warfarin:
 - Bleeding (treated with vitamin K or fresh frozen plasma)
 - Birth defects and abortion
 - Skin necrosis

Blood transfusion

- ABO system:
 - O antigen is made of H substance
 - A antigen is made of H substance + N-acetylgalactosamine
 - B antigen is made of H substance and galactose
- Blood types, antibodies and antigens:
 - A: A antigen on RBC, serum anti B
 - B: B antigen on RBC, serum anti A
 - AB: A and B antigen on RBC, no serum antibodies
 - O: no antigens on RBC, serum anti A and anti B
- O plasma is not a common donor because it has anti-A and anti B while O RBC is a common donor
- Blood donor criteria:
 - Age (17-65)
 - \circ Weight >50
 - Contact with infection
 - General health
 - Specific illness
- Whole blood donation (500 mL); then it can be centrifuged:
 - 200 mL of packed RBC
 - Platelets with plasma (can be centrifuged)
 - Platelet concentrate (50 mL): 5 days shelf life
 - Plasma (fresh frozen): 250 mL; one year shelf life
- Leukodepletion:
 - Universal leukodepletion introduced in 1999 to reduce the risk of vCJD transmission by blood
 - Other benefits: less febrile reaction, less allo0immunization, less GVHD, and less CMV
- Blood donation testing:
 - o Microbiology markers
 - Blood grouping and screening for high titer antibodies
 - Quality monitoring
- Washed RBCs:
 - Prevents hemolysis and anaphylaxis
 - For PNH patients and IgA deficient patients
- Irradiated RBCs:
 - Prevents GVHD
 - For immune-deficient patients
- RBCs shelf life:
 - With citrate: 28 days

- With adenine: 42 days
- Transfusion reaction:
 - Acute:
 - Immunologic:
 - Hemolytic
 - Febrile
 - Allergic
 - TRALI
 - Non-immunologic:
 - Circulatory overload
 - Hemolytic
 - Air embolism
 - Metabolic
 - Delayed (>24 hours)
 - Immunologic:
 - Allo-immunization (HLA)
 - Hemolytic
 - Post transfusion purpura
 - Graft Vs Host disease (GVHD)
 - \circ Immunedulation
 - Non-immunogenic:
 - Iron overload
 - Viral infections
 - Other infections
 - Protocol for all transfusion reactions:
 - Stop transfusions immediately
 - Maintain IV access with 0.9% NaCl
 - Check blood components for patient's ID
 - Notify blood bank
 - Send blood sample and urine to blood bank
 - Keep blood unit in case culture becomes necessary
 - Support patient as necessary
 - Transfusion transmitted disease:
 - HIV: 1/500,000
 - Hep C: 1/600,000
 - Hep B: 1/500,000
 - CMV: 50% of donors are sero-positive
 - Bacteria: 1/250 with platelet transfusion
 - Platelet transfusion:
 - Platelet concentrate (random donors)

- Pheresis platelets (single donor)
- Target levels:
 - Bone marrow suppressed patients >20,000
 - Bleeding/surgical patients >50,000
- Platelet transfusion complications:
 - Higher incidence than in RBC transfusions
 - Related to length of storage, leukocytes, or RBC mismatch
 - Bacterial contamination
- Patients with frequent platelet transfusions become refractory to transfusion because:
 - Allo-immune destruction of platelets (HLA antigen)
 - Non-immune refractoriness:
 - Microangiopathic hemolytic anemia
 - Coagulopathy
 - Splenic sequestration
 - Fever and infection
 - Medications (amphotericin, vancomycin, ATG, and interferones)
- Fresh frozen plasma:
 - Content: plasma with low factor V and VIII
 - Indications:
 - Coagulation deficiencies (liver disease and trauma)
 - DIC
 - Warfarin reversal
 - Factor VII and XI deficiencies
 - o Dose: 10-15 mL/kg
- TRALI:
 - Transfusion related acute lung injury
 - Not rare, but underdiagnosed
 - Potentially fatal
 - Presents as pulmonary edema
 - Occurs within 1-4 hours of starting the transfusion
 - Clinical features:
 - Acute respiratory distress
 - Fever with chills
 - Non-productive cough
 - Cyanosis
 - Hypotension
 - Chest pain
 - Chest X-ray shows bilateral pulmonary infiltrates in the hilar region
 - Pathogenesis:

- Classical theory (immune TRALI)
 - Donor's antibodies reacts with patient's neutrophils
 - Neutrophils sequestrate in pulmonary vasculature
 - Cytokine and components are liberated
 - Damage to endothelium leading to pulmonary edema
 - Two-hit theory (non-immune TRALI)
 - Predisposing condition (sepsis, surgery, trauma, or malignancy)
 - Pulmonary endothelial activation and neutrophil sequestrations
 - Lipids and WBCs antibodies activate neutrophils which causes endothelial damage
- TRALI management:
 - Non-specific
 - Largely supportive
 - Respiratory support with O₂ and mechanical ventilation
 - Steroids
- Note: females with previous pregnancy are not allowed to donate blood because all females produce antibodies against their husbands' and babies' antigens

Leukemias

- CLL:
 - The most common adult leukemia
 - Clues for diagnosis:
 - Elderly >50
 - Hypoglobinemia (IgA deficiencies to increased lymphocytes)
 - Autoimmune hemolysis (DAT positive)
 - CD19, CD 20
 - Mostly asymptomatic
 - Uncontrolled proliferation of mature defective B lymphocytes
 - Clinical presentation:
 - Lymphocytosis:
 - Morphologically mature
 - Immunologically immature
 - Accumulation in blood, lymphatics, and bone marrow
 - Enlarged lymph nodes
 - Splenectomy
 - Hypogammaglobinemia: mucosal infections
 - Approach:
 - Decide the type of lymphocyte T Vs B
 - Determine the stage (Rai Vs Binet systems)
 - Cytogenetics
 - Decide therapy, prognosis, and follow-up
 - Staging (Rai/Binet systems)
 - Early: 10 year median survival
 - Intermediate: 5-7 years median survival
 - Advanced: 1-3 years median survival
 - It is a heterogenous disease:
 - Prognostic factors:
 - Lymphocytosis
 - Lymph node involvement
 - Organomegaly
 - Anemia
 - Thrombocytopenia
 - Lymphocyte doubling time:
 - >1 year: good
 - <1 year bad prognosis
 - VH gene mutation:
 - Unmutated: rapid progression

- Mutated: slow progression
- Surrogate markers ZAP70 and CD38 carry a bad prognosis
- Loss of P53 carries the worst prognosis
- Treatment criteria:
 - Symptomatic: if the patient is asymptomatic, wait until B cell symptoms appear
 - Decline in Hb or Platelets
 - Lymphadenopathy
 - Hepatosplenomegaly
 - Recurrent infections
- Treatment:
 - Rituximab- antiCD20
 - Chemoimmunotherapy
 - Chlorambucil
- CML
 - Clonal expansion of hematopooetic stem cells possessing a reciprocal translocation between chromosome 9 and 22 (Philadelphia chromosome)
 - Fusion of BCR region on chromosome 22 with ABL gene from chromosome 9
 - Has 3 phases:
 - Chronic
 - Accelerated
 - Blas crisis
 - Incidence is 1.5/100,000
 - \circ Middle age (40-60)
 - Accounts for 20% of adult leukemias
 - Symptoms:
 - Insidious onset, accidental discovery
 - Fatigue, malaise, weight loss
 - Symptoms due to splenomegaly
 - Infections, thrombosis, bleeding
 - Gout
 - Physical examination:
 - Mild to moderate splenomegaly
 - Mild hepatomegaly
 - Rare to find lymphadenopathy except in terminal stages
 - o Labs:
 - Elevated WBC's
 - Elevated platelets
 - Normochromic, normocytic anemia
 - Basophilia

- The cytogenic hallmark t(9:22) in 95% of patients
- Accelerated phase:
 - Basophilia
 - Thrombocytopenia
 - Blasts between 10-20%
- Blastic phase:
 - Blasts >20%
 - Hyposegmented neutrophils (Petger-Het anomaly)
- Worsening of symptoms heralds progression (fever, weight loss, decreased response to treatment, and bone pain)
- Treatment:
 - If not treated, converts into AML
 - Aims:
 - Reduce WBC: hematologic
 - Reduce gout
 - Target the molecular cause
 - Modalities:
 - Imatinib:
 - a targeted treatment; competitive inhibition of adenosine triphosphate binding site of the ABL kinase
 - o 95% of patients achieved complete hematologic remission
 - 60% of patients achieved major cytogenic remission within few months
 - Side effects:
 - Main side effect is fluid retention, nauseam muscle cramps, diarrhea, and skin rashes
 - Myleosuppression is the most common hematological side effect
 - Stem cell transplant: the only definitive therapy
 - Others:
 - o Gamma interferons
 - Chemotherapy
 - 2nd generation of tyrosine kinase inhibitors for failure or relapse
 - Bone marrow transplant for crisis
 - Response to treatment:
 - We cannot detect any response beyond $5\log(10^{12}-10^7)$
 - PCR is the most accurate
 - Mechanism of resistance to treatment:
 - Gene amplification

- Mutation at the kinase site
- Enhanced expression of multi-drug exporter proteins
- Alternative signaling pathways
- AML:
 - Clues:
 - Adult
 - Auer bodies
 - DIC M3
 - No TdT markers
 - Blast with or without leukocytosis. The form with leukocytosis is the most common
 - Common manifestations:
 - Anemia
 - Thrombocytopenia
 - Neutropenia
 - Extramedullary infiltration: lymph nodes, skin, CNS
 - Hyperviscosity \rightarrow associated with neurological symptoms
 - Release of metabolites: DIC, gout, ARF
 - Classification:
 - FAB: French-American-British classification; it is a morphological classification
 - WHO classification
 - Cytogenetic
 - Prognosis based on cytogenetics:
 - Favorable: t(15,17), PML-PARA (M3), t(8;21), inv(16), t(16;16)
 - Intermittent: t(9;11)
 - Unfavorable: t(6;9), inv(3)/t(3,3), d(7), complex karyotype
 - Promyelocytic leukemia (M3)
 - Associated t(15;17) involving the retinoic acid receptor (RAR) gene
 - Good prognosis
 - Commonly associated with DIC
 - Prominent Auer bodies
 - Treatment:
 - In general: correct Hb before chemotherapy, treated with anthracyclin and RCA
 - M3:
 - Tretinoin (all trans retinoic acid (ATRA)); an oral drug that induces the differentiation of leukemic cells bearing the t(15,17). It is not effective in other forms of AML.

- Acute M3 patients are responsive to cytarabine and daunorubcin, but about 10% of patients treated with these drugs die from DIC induced by the release of granule components by dying tumor cells.
- Tretinoin:
 - No DIC
 - Causes rretinoic acid syndrome(ATRA syndrome):
 - In the first three weeks of treatment
 - Characterized by fever, dyspnea, chest pain, pulmonary infiltrates, effusion and hypoxia
 - Treatment: steroids, chemotherapy, supportive measures
 - Mortality rate: 10%
 - Other side effects:
 - Nasal stuffiness
 - Dry, red skin
 - Transient increase in ALT, AST, bilirubin and triglycerides. They rarely require any attention during treatment

- ALL:

- Clues:
 - Young
 - Pancytopenia and bone marrow failure
 - Immature B cells
 - Positive TdT markers
 - Blast \rightarrow acute
 - Positive periodic acid-Schiff stain (due to glycogen rich vacuoles), but negative peroxidase and negative non-specific esterase
 - Can present with acute leukemia syndrome
- Classifications:
 - Morphological (FAB)
 - L1 → 75%
 - $L2 \rightarrow 20\%$
 - L3 → 5%
 - Immunological classification:
 - B lineage (80%)
 - Pro-B: CD19, TdT
 - Common: CD19, TdT, CD10
 - Pre-B: CD19, TdT, CD10, cyIg (cytoplasm Ig)
 - Mature B: CD19, TdT, CD10, cyIg, smIg (surface Ig)
 - T lineage:

- Pre-T: CD7, TdT
- Mature T: CD7, TdT, CD2
- Molecular abnormalities with prognostic importance:
 - Better prognosis:
 - Normal karyotype
 - Hyperdiploidy
 - Poor prognosis:
 - o t(8;14)
 - o t(4;11)
 - very poor prognosis:
 - o t(9;22); Philadelphia chromosome
- Risk classification in ALL:
 - Standard risk
 - High risk
 - Very high risk
- High risk ALL:
 - Pre-T
 - Pro-B
 - Age >35
 - WBC >30 in B-ALL; >100 in T-ALL
- Treatment:
 - Determinant:
 - Risk qualification
 - Immunophenotype of leukemic cells
 - Age and biological condition
 - Goal of treatment
 - Remission induction treatment in ALL:
 - Anti-neoplastic treatment:
 - o Drugs: steroid, vincristine, asparginase, cyclophosphamide
 - Duration: 4-8 weeks
 - o 1-2 courses
 - CNS prophylaxis: via methotrexate intrathecally
 - Supportive care
 - Treatment of complications
 - Post remission therapy in standard risk ALL:
 - Maintenance: 6-mercatopurine, methtroxate
 - Intensification treatment periodically
 - CNS prophylaxis
 - Post remission therapy in high risk ALL:
 - Intensification treatment

- Hematopoietic stem cell transplant
- Treatment results:
 - Complete remission in 80-85% of adults, and 95-99% of children
 - Leukemia free survival in 30-40% of adults and 70-80% of children
- Splenomegaly is unusual in acute leukemias
- Acute leukemias (ABCDEF)

- o Acute
- Blast predominance
- o Children
- Drastic course
- Elderly
- o Fever
- Chronic leukemias:
 - o Mature predominance
 - o Middle age
 - Less drastic course
 - o Usually no fever
- Summary of treatment:
 - ALL: vincristin, prednisone, laspraginase, anthracyclin
 - AML: anthracyclin, cytarabin
 - o Acute pro-myelocytic leukemia: all trans retinoic acid
 - o CLL: no treatment if asymptomatic; clorambucil and rituximab
 - CML: imatinib, gamma intereferon
 - Hodgkin (IA, IB): radiotherapy

Lymphomas

- Common features:
 - Painless lymph node enlargement
 - o B-symptoms (fever, night sweats, weight loss)
 - Compression symptoms secondary to enlarged lymph nodes
 - Extra-nodal involvement
 - Needs lymph node biopsy for diagnosis
 - Each have different histology types
 - Both have similar staging systems
- Non-Hodgkin lymphoma (NHL):
 - Each type of lymphoma can be viewed as a lymphocyte arrested at a certain stage of development and transformed into a malignant cell
 - 85% are of a B-cell origin
 - 15%: T-cell or null all
 - Etiology:
 - Idiopathic: most common
 - Immune suppression:
 - Congenital (Wiskott Aldrich)
 - Organ transplant (cyclosporine)
 - AIDS
 - Aging
 - DNA repair defects:
 - Ataxia telangectasia
 - Xeroderma pigmentosa
 - Chronic inflammation and antigenic stimulation:
 - Helicobacter pylori- stomach
 - Chalmydia psittaci ocular adnexia
 - Sjogren's syndrome
 - Viral causes:
 - EBV and Burkitt lymphoma
 - HTLV-1 and T-cell leukemia
 - HTLV-V and cutaneous T cell lymphoma
 - Hepatitis C

• Diagnosis:

- Chromosome changes:
 - T(14:18) in follicular lymphoma (bcl oncogene)
 - T(8:14) and others in Burkitt lymphoma (c-myc oncogene)
 - T(11:14) in mantle cell lymphoma (cyclin D1 gene)
- Staging:

- Ann Arbor
 - Same for NHL and HD
 - I: 1 lymph node region or structure
 - II: >1 lymph node region or structure; same side on diaphragm
 - III: both sides of diaphragm
 - IV: extra nodal sites, diffuse
 - A: no systemic symptoms other than pruritis
 - B: presence of B cell symptoms
 - E: extra nodal extension
- Revised European American lymphoma classification:
 - Indolent: follicular
 - Aggressive
 - Very aggressive (Burkitt, lymphoblastic lymphoma)
- Frequency of NHL subtypes in adults:
 - 30% diffuse large B-cell
 - 20% follicular
- Prognostic factors in non-Hodgkin's:
 - Adverse factors: age >60, stage III and IV
 - High serum LDH: indicating high turnover
 - Performance status (ECOG 2 or more)
 - More than one extra-nodal site involved
- Treatment options in advanced indolent lymphoma:
 - Observation only
 - Radiotherapy at the site of the problem
 - Systemic chemotherapy:
 - Oral agents: chlorambucil and prednisone
 - IV agents: CHOP, COP-R, FC-R
 - Anti-CD20: rituximab
 - Stem cell or bone marrow transplant
- Treatment options for aggressive lymphoma:
 - Potentially curable
 - Disseminate through blood stream: early
 - Must use systemic chemotherapy:
 - CHOP-R 8 cycles
 - CHOP-R 3 cycles followed by radiotherapy
 - Bone marrow transplant in some cases
 - CHOP-R: cycophosphamide, Hydroxydaunirubcin, vincrystin, prednisone, Rituximab
 - Intrathecal chemotherapy for AIDS and CNS involvement
 - Radiotherapy for spinal cord compression and bulky disease

- Hodgkin disease:
 - With appropriate treatment about 85% of patients with Hodgkin's disease are curable
 - Treatment based on stage:
 - IA, IB: radiotherapy
 - IIA: chemotherapy + radiotherapy
 - IIB, IIIA, IIIB, IVA, IVB: chemotherapy with or without radiotherapy
 - Chemotherapy (ABVD)
 - Adriamycin
 - Bleomycin
 - Vincristin
 - Dacarbazine

Comparison between HD and NHL			
HD	NHL		
Reed strengberg cells	No Reed strengberg cells		
Single group of axial LN	Multiple groups of peripheral LN		
Contagious spread of LN	No contagious spread to LN		
More constitutional symptoms	Less constitutional symptoms		
Bimodal age (young and elderly)	20-40 year		

- When you encounter and enlarged tonsil in an adult, think of NHL
- Reed Sternberg cells: binucleated cells with mirror image nuclei
- Multiple myeloma:
 - CRAB:
 - Elevated Ca
 - Renal failure
 - Anemia
 - Bone pain
 - Clinical features
 - Symptoms related to bone marrow infiltration: bone pain, osteolytic lesions and fractures, anemia, and hypercalcemia
 - Symptoms related to secretion of abnormal proteins: renal, neurological, or visceral symptoms
 - Hyperviscosity syndrome
 - Recurrent infection
 - Amyloidosis
 - Mnemonic (Buy CAVIAR)
 - Lytic bone lesion visible on X-ray
 - Hypercalcemia
 - Hyperviscosity especially common in the IgM secreting myeloma
 - Bacterial infection
 - Amyloidosis

- Renal failure: occurs in 50% of patients because most of the light chains are toxic to the tubules
- Work-up:
 - CBC and blood film: roloux formation
 - ESR, Ca, creatinine
 - Albumin
 - Bone marrow biopsy and aspirate
 - Serum proteins and electrophoresis and immune-fixation
 - Skeletal survey: plain X-ray better than a bone scan because lytic lesions do not show well on a bone scan
 - Quantitative immunoglobulins
 - Bence Jones protein
- Durie-Salmon staging system for multiple myeloma disease burden (tumor load)
 - Stage I:
 - Hb >10
 - Normal bone or solitary plasmacytoma
 - Low immunoglobulin spike (M-component)
 - \circ IgG < 5, IgA <3
 - \circ Bence Jone's protein <4g/24 hours
 - Stage II:
 - IIA: normal renal function (Cr <2)
 - IIB: abnormal renal function (Cr >2)
 - Stage III:
 - Hb <8.5
 - Serum Ca >12
 - Multiple lytic bone lesions on X-ray
 - High M component
 - IgG >7, IgA >5
 - Bence-Jone's protein >12g/24 hours
- International staging system:
 - I: good prognosis:
 - Serum albumin >3.5 g/dL
 - Serum B₂ microglobulin <3.5 mg/dL
 - II: between I and III
 - III: B₂ microglobulin >5 mg/dL
- Treatment:
 - Standard chemotherapy:
 - Dexa and thalidomide
 - Dexa and Bartezomib (Velcade)
 - Melphalane and prednisone for elderly

- High dose chemotherapy:
 - Bone marrow transplant
 - Peripheral stem cell transplant

Myeloproliferative neoplasms

- Myeloid malignancies:
 - o EML
 - o AML
 - Polycythemia rubra vera (PRV)
 - Essential thrombocytopenia (ET)
 - Myelofibrosis (MF)
- PRV, ET, and MF: compose the chronic myeloproliferative disorders (CMPN)
- Common features of CMPN:
 - o Each has specific diagnostic criteria, but they share some characteristics
 - Increased number of one or more myeloid cells
 - o Splenomegaly
 - Hypercatabolism: weight loss and gout (AML)
 - Clonal marrow hyperplasia without dysplasia
 - Predispose to evolve into AML
 - Generalized pruritis (after bathing)
 - Unusual thrombosis (Budd Chiari syndrome)
- Polycythemia rubra vera:
 - Clinical features:
 - Palpable spleen
 - Enlarged liver
 - JAKII mutation
 - Elevated leukocyte alkaline phosphatase (LAP)
 - Bone marrow shows erythroid hyperplasia and increased number of megakaryocytes
 - EPO is not diagnostic but suggestive
 - 10% converts into AML
 - Diagnostic tools:
 - JAKII mutation
 - Normal or decreased erythropoietin
 - Increased RBC with normal saturation
 - Mutations in CMPN (due to activation of STAT3/5)
 - Gain of function in JAKII, MPL, CBL
 - Loss of function in LNK and NF1
 - o JAKII:
 - Gain of function presents in:
 - 95% of PRV
 - 23-57% of ET
 - 43-57% of cases of MF

- Risk classification:
 - Low risk:
 - Age <60
 - No previous thrombosis
 - High risk:
 - Age >60
 - Previous thrombosis
- Diagnostic criteria for PRV (you need A1 + A2 with one more A criteria or 2 more B criteria)
 - A criteria:
 - A1: raised RBC mass
 - A2: Normal O₂ saturation and EPO
 - A3: palpable spleen
 - A4: no BCR-ABL fusion (absent Philadelphia chromosome)
 - B criteria:
 - B1: thrombocytosis >400 x 10^9
 - B2: neutrophilia: $>10 \times 10^9$
 - B3: radiological splenomegaly
 - Endogenous erythroid colonies
- Treatment of PRV:
 - Phlebotomy (Hct <45%)
 - Low dose aspirin
 - Hydroxyurea or interferon gamma
 - Busulphan in elederly
 - Manage CVS risk factors
 - Allopuranol
 - Increased water intake
- Treatment of ET:
 - o Hydroxyurea
 - o Aspirin if microvascular disturbance
 - Manage cardiovascular risk
- Myelofibrosis:
 - Teardrop cells
 - Bone marrow shows hypercellularity with grade II fibrosis